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a b s t r a c t 

Over the past few years, massive penetrations targeting an Industrial Control System (ICS) network intend 

to compromise its core industrial processes. So far, numerous advanced methods have been proposed to 

detect anomalous patterns in the numeric data streams with respect to the heterogeneous field devices 

involved in the industrial processes. These methods, despite reporting decent results, usually conduct 

system-wise detection instead of fine-grained anomalous pattern recognition at the device level. Further- 

more, lacking explicit consideration of the exclusive process-related features with respect to each differ- 

entiated device, the fitness of their application in specified industrial processes is undermined. To tackle 

these issues, a GNN-based Attributed Heterogeneous Graph Analyzer (the AHGA) is designed to perform 

device-wise anomalous pattern detection via in-depth process-oriented associativity learning. The AHGA’s 

framework is constructed with four building blocks: a graph processor, a feature analyzer, a link inference 

decoder, and an anomaly detector. Its performance is assessed and compared against multiple link infer- 

ence and anomaly detection baselines over 2 popular ICS datasets (SWaT and WADI). Comparative results 

demonstrate the AHGA’s reliability in capturing sophisticated process-oriented relations among heteroge- 

neous devices as well as its effectiveness in boosting the performance of anomalous pattern recognition 

at device-level granularity. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Security issues in the industrial control systems (ICSs) have 

roused considerable attention in recent years [1,2] . Over the past 

ecade, penetrations attempting to compromise the core industrial 

rocesses supervised by the ICSs have seen a drastic ascension. 

n light of the potentially catastrophic outcome such penetrations 

ay lead to (e.g. damage/destruction of critical infrastructures, per- 

onnel casualty, economic losses, etc.), deriving reliable detection 

chemes against these hostile activities in order to secure the ICS 

rocesses is of paramount importance universally. As the effect of 

hese penetrations, such as zero-day attacks, can usually be re- 

ected via the numeric variations in the data streams associated 

ith the related field devices, say, the series of sensor readings and 

ctuator operational modes (See Fig. 1 ), our demand is equivalent 

o recognizing the deviated and potentially hazardous patterns in 

hese numeric streams. 

Anomalous pattern recognition in ICS data streams have been 

nvestigated from extensive perspectives ranging from simple clas- 
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ic approaches to advanced machine and deep learning solutions 

3] . Leveraging the periodic properties rendered by the ICS traffic, 

he majority of the classic approaches, such as the DFA series [4] , 

tc. convert the original numeric series into cycles of states, and di- 

gnose any transitional pattern that deviates from the designated 

ows in the produced cycles. While simple in principle, these so- 

utions are subject to potential state explosion in case the origi- 

al data exhibits overly convoluted variational patterns. Moreover, 

hese methods only process individual sequences and are hence 

lind to the in-depth correlational characteristics among different 

eld devices, for which their detection results do not present suf- 

cient credibility. 

In order to effectively extract and utilize the in-depth relation- 

hips among distinct data streams, Neural Network (NN) based 

eep learning approaches have been widely investigated for ICS 

nomalous pattern recognition [5–7] . In general, these methods 

onsist of an input layer that takes in the numeric values asso- 

iated with all devices as the initial features, a chain of encoding 

ayers or more advanced processing blocks depending on the spe- 

ific algorithm, and a joint mapping module that produces the pre- 

icted labels with respect to the given input (See Fig. 2 ). Such NN-

ased models [8,9] are mostly designed to encode both the tem- 

https://doi.org/10.1016/j.patcog.2023.109661
http://www.ScienceDirect.com
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Fig. 1. Field device numeric streams with benign and anomalous patterns. 

Fig. 2. Outline of neural network ICS anomaly detection scheme (Input: Data streams for all ICS devices. Output: Single system-wise predicted label). 
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oral and spatial properties among distinct numeric streams, and 

hey report promising results in many metrics. Nevertheless, most 

f these methods, to the best of our knowledge, inspect system- 

ise anomalies in an ICS scenario, which means the produced in- 

erence results reflect the states of an entire system, rather than 

n individual device. Such results do not offer valuable insights in 

ccurate retracing and efficient responding to the occurred anoma- 

ies. 

Recent advances in the Graph Neural Networks (GNNs) have 

rovided massive new opportunities in ICS anomaly detection 

10,11] , in light of their powerful ability to deal with random 

raph-structured data [10] . As differentiated from the classic NN 

pproaches, a GNN’s input not only includes the device’ data 

treams, but also a graph showing how different devices are con- 

ected to each other. Empirically, how well a GNN model performs 

an be influenced by the quality of the input graph, as it is the core

edia that defines how the nodes transmit messages to each other. 

o far, there are extensive GNN methods that aim at developing 

raph regulating schemes for adversary detection in the ICSs or 

oT networks, such as the GDN [12] that dynamically updates the 

raph based upon the learnt associativity, and the FT-GCN [13] that 
2

enerates graphs using the profiles of the traffic flows. Effective as 

hey are claimed in their own specified problem, when it comes to 

ecuring specific industrial processes, however, their input graphs, 

ypically randomly initialized, do not reflect the devices’ explicit 

elationships in the specified process (For example, the value of a 

ank level indicator in a water treatment stage is tightly associated 

ith the numeric reading of a flow indicator on a pipe attached 

o the tank). Potentially, this impairs the quality of the graph upon 

hich subsequent anomalous pattern detection is based. 

To address the aforementioned problems in the current NN 

nd GNN-based anomalous pattern recognition for the ICS pro- 

esses, this paper aims at designing a compound anomaly detec- 

or named the Attributed Heterogeneous Graph Analyzer (AHGA), 

hich achieves device-wise (node-level) instead of coarse-grained 

ystem-wise anomalous pattern recognition via in-depth process- 

riented associativity learning. By applying distributed decoders 

or every individual node rather than using a joint mapping block, 

he AHGA can be trained to deduce the states of every device of 

nterest for any applicable jiff, which is a much more challenging 

ask than making inferences for an overall architecture. Further- 

ore, in order to tackle the inferiority of current GNN approaches 
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hat the graph’s quality can be negatively affected by existing ini- 

ialization approaches (such as random initialization), the AHGA is 

esigned to utilize the devices’ explicit relations in specific indus- 

rial processes as the a priori knowledge for deriving the further 

ophisticated associativity among heterogeneous devices, and to 

enerate the graph that reflects this advanced associativity. There- 

ore, with these process-oriented relations considered, the AHGA 

as a better perception of how different devices in an ICS net- 

ork are correlated with each other in terms of their roles and 

unctionality, and is hence better tailored to the distinctiveness of 

isparate industrial processes. To the best of our knowledge, this 

s one of the first works to leverage the devices’ explicit process- 

riented relationships to improve the quality of the graph used 

or ICS anomalous pattern recognition. The AHGA’s architecture is 

omposed of the following primary components: (a) A graph pro- 

essor which initializes the graph structure based upon real world 

CS architectures. (b) A feature analyzer that creates a uniform 

nitial vector representation for all heterogeneous devices in the 

raph, based upon the captured data streams with respect to these 

evices. In this module, an entropy-based scheme is developed for 

he derivation of a particular set of statistical properties as part 

f a vector’s entries. (c) A link inference decoder that learns the 

raph for anomaly detecton, and (d) An anomaly detector that op- 

rates on the graph produced by the link inference decoder and 

onducts node-level anomalous pattern recognition via distributed 

ecoding blocks. 

The key contributions of our work can be summarized as fol- 

ows: 

1) We perform comprehensive preprocessing on the data flows 

captured on ICS testbeds, and define a multi-dimensional fea- 

ture extraction scheme to profile heterogeneous field devices. 

Specifically, we present an entropy-based approach for period- 

icity mining, which is implemented and validated with the pro- 

vided device readings. 

2) We design the AHGA, a compound framework that achieves 

fine-grained device-level anomalous pattern recognition via 

graph learning and distributed decoding. Specifically, the de- 

vices’ explicit process-oriented relations are used as a basis for 

the AHGA to infer the in-depth associativity among the devices. 

This learnt associativity is further utilized to conduct device- 

wise anomalous pattern recognition via distributed decoding. 

3) Using the SWaT and WADI datasets, we evaluate the AHGA’s 

ability to detect anomalous patterns in ICS streams via asso- 

ciativity learning. Comparative results on state-of-the-art base- 

lines have justified the positive effect of utilizing the de- 

vices’ process-oriented relations on accurate associativity learn- 

ing and reliable anomalous pattern recognition. 

The rest of the paper is structured as follows. Section 2 pro- 

ides a summary of GNN’s preliminaries and an overview of re- 

ated work regarding correlation analysis in ICSs; In Section 3 , we 

efine the problem to be addressed; In Section 4 , we explain the 

tructure of AHGA; Section 5 presents the model evaluation results 

nd highlights relevant analysis; Section 6 concludes the article. 

. Preliminaries and related work 

In this section, the GNNs’ fundamentals and related work on 

CS anomaly pattern detection are overviewed. For the clarity of 

resentation, all symbols used in this section and their annotations 

re displayed in Table 1 . 

.1. Preliminaries 

The GNNs perform message passing on graphs to enrich the 

odes with their local information. During each round of message 
3 
assing, every node in the graph update its representation by ag- 

regating messages from its immediate neighbours. This represen- 

ation is a contextual mixture of a node’s own properties as well as 

ts awareness of its surrounding nodes and edges. Suppose h (k +1) 
v 

s the representation for node v at the (k + 1) -th GNN layer, it as-

ociates with the k -th layer in the following manner: 

 

(k +1) 
v ← UP DAT E(h 

(k ) 
v , AGGR (u ∈ N(v ) , MSG (h 

(k ) 
v , h 

(k ) 
u , e (u, v )))) 

(1) 

here N(v ) is the set of all nodes directly linked to node v , and

 (u, v ) represents the edge connecting nodes u and v . 
In (1) , MSG (. ) formulates the message from a particular neigh- 

our node u by extracting important information from u and 

 and the edge connecting them. AGGR (. ) gathers the messages 

rom all v s neighbours in a certain way, and produces an output 

hat is subsequently absorbed in the node v s own embedding in 

he UP DAT E(. ) operator. Note that there are extensive methods 

o implement these operators, some of which are introduced in 

ection 2.2 . 

.2. Related work 

So far, massive deep learning methods have been introduced 

o explore the in-depth features in data streams to yield desir- 

ble event detection results [14–16] . For instance, a deep adver- 

ial anomaly detection (DAAD) method [17] is proposed to learn 

ask-specific features capture the marginal distributions of normal 

ata in detecting sequantial anomalous patterns. A black-box at- 

ack scheme (BBAS) [18] is designed to assist improving the DNN’s 

eliability in detecting adversarial example attacks. In order to de- 

ect anomalous patterns in ICS and IoT data streams, numerous ap- 

roaches are introduced including a compound framework imple- 

ented with multi-attentional DNN blocks [19] , a weighted ran- 

om sampling approach using a generalized sampling algorith- 

ic framework [20] , two semi-supervised hybrid deep learning 

ethods (AE-GRU and GAN-RNN) [21] , an LSTM-based architec- 

ure (ClozeLSTM) [22] , an unsupervised approach combining neural 

etworks and a one-class objective [23] , etc. In addition, to tackle 

alse pattern injection in the ICSs, a robust spatial-temporal detec- 

or (AD-RoSM) [24] is developed. A light-weight federated learning 

ased anomaly detector (FATRAF) [25] is designed to detect irreg- 

lar patterns in time-series data. An ML-based anomaly detector 

hat leverages the system’s design knowledge [26] is proposed to 

mprove the model’s detection accuracy. 

The GNN’s application in anomaly pattern recognition has been 

omprehensively investigated [10,27] . For example, a novel meta- 

raph based convolutional scheme named Meta-GNN [28] is intro- 

uced to extract and incorporate complex local properties in or- 

er to capture higher-order semantic relationships in the network. 

 Deep Cluster Infomax approach is proposed for node represen- 

ation learning [29] in which representation learning and state 

lassification are separately trained. Specifically designed for ICS 

nomaly detection scenarios, the Graph Deviation Network (GDN) 

12] considers inter-sensor relationships as a key factor in detect- 

ng anomalous events via studying a high-dimensional time series. 

ikewise, the MST-GNN [30] performs feature extraction over mul- 

ivariate time series data considering the properties of each in- 

ividual series. In order to create robust low-dimensional repre- 

entations, a new contrastive-based unsupervised graph represen- 

ation learning (UGRL) framework [31] is designed that associates 

ownstream tasks to the learning process via contraints. A modi- 

ed strategy, e-ResGAT [32] is proposed on the basis of the regular 

AT via residual learning. In addition, to improve the quality of the 

eatures used for message aggregation, the AsGNN [33] is devel- 

ped to perform feature selection via normalization, and the GLIN 
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Table 1 

Symbol Annotations. 

Symbols Annotations 

v , u Nodes in a graph 

h (k ) 
v Vector representation of node v after the k -th round of message passing is complete 

N(v ) v ’s immediately connected nodes in a the graph 

e (u, v ) An link connecting nodes u and v 
MSG (. ) Operator that creates a message between a specified pair of connected nodes 

AGGR (. ) Operator that aggregates the messages produced between one node and all its connected neighbours 

UPDAT E(. ) Operator that combines a node’s own representation and the aggregated message from its neighbours 

Table 2 

Symbol Annotations. 

Symbols Annotations 

G Graph to learn 

V Set of all vertices (devices) in the learnt graph G 

E Set of all links in G relecting the learnt relationships among the devices 

E 0 Set of all links reflecting a priori knowledge 

S Set of all relations that may exist, apart from the links repesenting the a priori knowledge 

C Set of all conditions defining explicit process-oriented relations among the devices 
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34] is designed to utilize a graph’s global properties in improving 

he model’s detection accuracy. Further, to reduce the scale of the 

raphs for efficient computing, the Graph Reduction Neural Net- 

ork [35] is proposed to perform structural pattern recognition. 

Despite being highly advanced and achieving good results, the 

forementioned solutions mostly apply to coarse-grained system- 

evel anomaly detection for which they are incapable of locating 

nomalous devices, significantly degrading their practicality. There- 

ore, this work aims at deriving a comprehensive solution to detect 

nomalous patterns via in-depth associativity learning. Particularly, 

he proposed method is able to yield results for specific devices in- 

tead of deriving system-level anomaly detection. 

. Problem statement 

In this section, the problem to be addressed as well as some 

ntuitive ideas behind the proposed solution (AHGA) is introduced. 

o make relevant descriptions clear, all symbols that appear in this 

ection are listed in Table 2 along with their annotations. 

As an anomalous pattern recognition solution exhibiting 

romising prospects, the GNNs enable embedding learning via 

essage passing on a predefined graph topology G (V, E) . The 

urpose of designing the AHGA is to derive a feasible and 

rocess-wise interpretable mechanism to produce a proper G (V, E) , 

n which anomalous pattern recognition is conducted. Defining 

 (V, E) naturally breaks down to determining the node set V and 

he edge set E. In case of abstracting each ICS device to a node

n the graph, determining V is trivial as the set of ICS devices re-

ated to a particular industrial process usually remains stationary 

ver time, due to the convention that addition or removal of de- 

ices is rare in an ICS environment to circumvent undesired influ- 

nce on the process. Therefore, our first primary task addressed in 

his paper is to define the link set E so that the graph serves as

n appropriate reflection of the sophisticated relationships among 

eterogeneous ICS devices. That said, this problem is defined as 

ollows: 

efinition 1. Given an industrial control network G (V, E 0 ) , where 

 is the set of individual hosts, controllers, or field devices, and 

 0 the set of known relations (such as direct physical commu- 

ications) among all elements in V . i.e. ∀ e ∈ E 0 , link (e ) = 1 (Op-

rator link (. ) returns 1 on e s existence or 0 otherwise). Let S =
 × V \ E 0 , and C is the set of field conditions. Find E ⊆ S so that

 e ∈ E, link (e | C) = 1 . 
4 
In this paper, we leverage the devices’ explicit process-oriented 

ssociativity to determine the graph for subsequent anomalous 

attern recognition. In a water treatment process, for instance, we 

ay consider that the sensor measuring the water level of a tank 

nd the sensor measuring the water flow in the pipe connected to 

he tank are associated with each other in their readings. On the 

ther hand, we may not expect much connection between the set 

f sensors operating in one location and those in another, on the 

ssumption that the processes in disparate geographical locations 

perate independently. In Definition 1 , C is the set of empirically 

egulated conditions based on the devices’ relations exemplified as 

bove. The set does not incorporates all the relationships among 

he set of nodes V . However, it serves as a heuristic for the model

o learn a broader variety of relations during the training process. 

herefore, the edge set E produced by the AHGA is supposed to 

over most or all connections suggested by C, as well as other re- 

ations not directly defined in it. The produced E is then utilized in 

ownstream anomaly detection tasks. 

As the second core task, the AHGA conducts anomalous pattern 

ecognition over the numeric streams with respect to the ICS de- 

ices using the produced graph G (V, E) . More sophisticated links 

ncorporated in G , the AHGA is able to obtain a more in-depth per-

eption of the industrial process, allowing a boost in the results’ 

eliability. 

. Model design 

The AHGA consists of four core modules respectively named as 

 graph processor, a feature analyzer, a link inference decoder and 

n anomaly detector. The graph processor abstracts the a priori 

nowledge on the devices’ relations into a graph topology, which 

erves as a basis for subsequent graph learning. The feature ana- 

yzer creates unified profiles for heterogeneous devices with com- 

rehensive information obtained from numerous respects, includ- 

ng the devices’ roles in the industrial process, statistic properties 

f their numeric streams, etc. The output of the graph processor 

nd the feature analyzer is then passed onto the link inference de- 

oder (implemented as a multi-layer GNN structure) to learn the 

evices’ complex process-oriented relations, with which the AHGA 

ains a comprehensive view over the industrial process. Finally, 

hese newly learnt relations are utilized by an anomaly detector 

a second multi-layer GNN-based module) to recognize anomalous 

atterns with respect to each device. The overall structure of AHGA 
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Fig. 3. AHGA Structure. 

i  

c

w

4

h

s

t

m

i

v

b

h

r

l

b

E

w

t

l

�

p

A  

r

r

c

l

fi

o

fi

o

m

c

l

(

t

s

V  

i

s

i  

ϕ

γ

s presented in Fig. 3 . Note that in order to give clear presentation,

ore symbols that appear in this section are listed in Table 3 along 

ith their annotations. 

.1. Graph processor 

The graph generator constructs a base topology G (V, E 0 ) ex- 

ibiting the devices’ explicit process-oriented features on the ba- 

is of which subsequent graph learning is conducted. Specifically, 2 

ypes of features are considered: physical communications and nu- 

eric stream correlations. In terms of physical communication, for 

nstance, direct data transmission between a sensor and its super- 

ising controller determines a solid physical link of communication 

etween them. As to the stream numeric correlations, on the other 

and, a sensor measuring a tank’s liquid level is numerically cor- 

elated with another sensor that records the flow volume of a pipe 

inked to this tank. 

With both respects taken into account, the edge set E 0 of the 

ase topology can be interpreted as follows (see (2) ): 

 0 = �(T ) ∪ �(C) (2) 

here �(T ) is the set of all physical communication links and �(C) 

he set of stream numeric correlations. Equation (2) indicates that 

ink set of the base topology is the union of �(T ) and �(C) . 

To determine the devices’ physical links of communication 

(T ) , a general hierarchical topology (see Fig. 4 (a)) with multi- 
5 
le layers featuring distinct functions is adopted as a reference. 

s shown in Fig. 4 (a), atop the structure is an aggregation of all

emote management systems typically deployed within a corpo- 

ations internal network, which are usually bounded within the 

loud periphery for the purpose of observation or exhibition. This 

ayer is conventionally prohibited to directly interfere with the 

eld process on the lower level. Immediately below it is a layer 

f controlling units that continuously interact with the peripheral 

eld devices (sensors and actuators) on the bottom layer during 

peration of an industrial process. 

In order to create a general base topology that adapts to the 

ajority of typical ICS architectures in terms of devices’ physical 

ommunication, we encapsulate everything above the controlling 

ayer into one single node denoted as the central reference point 

the CRP, and denoted as ξ ) while mapping all other devices to 

heir own corresponding nodes. This finalizes the node set V as a 

et of controllers, field devices, plus the CRP. (See (3) ) 

 = { ξ , { γi | i ∈ [1 , n ] ∩ Z} , {{ ϕ 

γi 

j 
}| i ∈ [1 , n ] ∩ Z j ∈ [1 , n i ] ∩ Z}} (3)

Note that in (3) , n represents the controllers’ quantity, which 

n our case, equals the number of stages given each stage is as- 

igned with only one controller. n i is the number of field devices 

n the i -th stage. γi refers to the controller in the i -th stage, and

 

γi 
j 

corresponds to the j-th field devices supervised by controller 

. Equation (3) defines the explicit composition of the node set V . 
i 
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Table 3 

Symbol Annotations. 

Subsection Symbols Annotations 

4.1 E 0 Set of all links reflecting a priori knowledge 

4.1 �(T ) Set of links representing the devices’ physical communications 

4.1 �(C) Set of links relecting how the states of devices are numerically correlated 

4.1 ξ Node encapsulating the part of an ICS above the controllers’ layer (e.g. SCADA, HMI in Fig. 4 ) 

4.1 n Controllers’ quantity 

4.1 Z Set of all integers 

4.1 γi The controller with respect to the i -th stage 

4.1 ϕ γi 

j 
The j-th field devices supervised by controller γi 

4.1 � List of dictionaries reflecting the links between the controllers and field devices 

4.1 ω Dictionary in � reflecting the links between the controller and field devices in a specific stage 

4.2 S Original numeric data stream 

4.2 N Length of sequence for entropy computation 

4.2 βmin , βmax Global minima, maxima of a sequence 

4.2 k Number of intervals devided in range [ βmin , βmax ] 

4.2 	(i ) An event in which an element falls within the i -th interval of a sequence 

4.2 E (k ) 
i 

Entropy of event 	(k ) computed from sequence of length N

4.2 
(Var) , 
(SD ) Variance, Standard Deviation of sequence entropies 

4.2 w 0 , w max Initial period candidate, upper bound of period value 

4.2 δ, δw Variation rate of period candidate value, sliding step size of a window on data stream S

4.2 ψ Location (starting point) of a specific window on data stream S

4.2 P, n P Set of all windows, size of set P

4.2 ρmax , ρmin Averaged period maxima, minima over all windows for data stream S

4.2 μ(E (k ) 
i 

) , σ 2 (E (k ) 
i 

) Entropy mean, variance over all windows for data stream S

4.2 
−→ 

e Initial vector representation of a device before normalization 

4.2 
−→ 

e G , 
−→ 

e C , 
−→ 

e M Sub-vectors in 
−→ 

e with respect to the device’s General, Control and Measurement features 

4.2 e norm Initial vector representation after normalization 

4.2 x Initial vector representation of a device after PCA processing 

4.2 m x ’s dimension 

4.3 v i Particular node in the node set V 

4.3 x i Initial vector representation with respect to node v i 
4.3 h i Learnt embedding with respect to node v i in the Link Inference Decoder 

4.3 h (k ) 
i 

Learnt embedding with respect to node v i after the k -th message passing step is complete 

4.3 d i Degree with respect to node v i 
4.3 W 

(k ) Parameter matrix with respect to the k -th message passing layer in the Link Inference Decoder 

4.3 H Embedding matrix containing all learnt embeddings h i ’s 

4.3 A i j , p(A i j ) Event that node v i and v j are correlated, probability of A i j ’s occurence 

4.3 P link Matrix containing all A i j ’s 

4.3 η Number of message passing layers 

4.3 ep, ep max Epoch index, configured upper bound of the epoch’s quantity 

4.4 χ Preprocessed temporal representation of a device, acting as an initial vector for message passing 

4.4 S Interval extracted from original numeric stream for temporal condensation 

4.4 N , n Length of S , number of consecutive values in S condensed into a single value 

4.4 a Balancing factor shaping the amplitude of exponential weights 

4.4 W 

(k ) 
ad 

Parameter matrix with respect to the k -th message passing layer in the Anomaly Detector 

4.4 h i Learnt embedding with respect to device v i in the Anomaly Detector 

4.4 ˆ y i , ˆ Y Label output with respect to device v i , list of all ˆ y i ’s 

Fig. 4. ICS topology and the abstracted graph. 

6 



S. L(y)u, K. Wang, L. Zhang et al. Pattern Recognition 141 (2023) 109661 

Table 4 

Process Oriented Conditions. 

No. Devices Correlation 

1 FITs from adjacent stages true 

2 FITs and LIT(LT)s within the same stage true 

3 Adjacent devices in the piping diagram true 

4 AITs and other sensors false 

5 Devices in the same stage exhibiting similar periodic features true 
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The scheme for deriving the devices’ physical linkage �(T ) is il- 

ustrated in Algorithm 1 , and this linkage is displayed in Fig. 4 (b).

he oval yellow node ξ is the central reference point abstracted 

rom all supervisory elements from the upper level. It is sur- 

ounded by multiple orange nodes γ ’s representing controllers. 

ach controller γ is associated with numerous field devices ϕ 

(γ ) ’s 

green rectangles for sensors and blue for actuators). 

lgorithm 1 Physical Linkage Definition. 

nput : List of stages �; Each stage element ω is a dictionary 

apping every controller γ in the stage 

o the list �(γ ) of field devices ϕ 

(γ ) ′ s in connection with γ . 

utput : Node set V and physical link set �(T ) 

nsure: 

: V ← ∅ , �(T ) ← ∅ 
: Initialize the CRP node as ξ
: V ← V + ξ
: for each ω in �: 

: for each controller γ in ω: 

: �(T ) ← �(T ) + < ξ , γ > 

: V ← V + γ
: for each field device ϕ 

(γ ) connected to γ : 

: �(T ) ← �(T ) + < γ , ϕ 

(γ ) > 

0: V ← V + ϕ 

(γ ) 

1: end for 

2: end for 

3: end for 

4: return (V, �(T ) ) 

Defining the devices’ stream correlations �(C) requires some 

ntuitive observations over the system. Such correlations can be 

erived from a few general conditions that serve as an overall 

nduction of the devices’ numeric associativity inferred from the 

ystem’s piping and instrumentation diagram. Taking the popular 

WaT and WADI datasets as an example, such conditions are sum- 

arized in Table 4 . Note that minor discrepancies exist in the de- 

ices’ notation representations (For example, the LITs in SWaT and 

he LTs in WADI). 

In the SWaT and WADI datasets, flow indication transmitters 

FITs) are sensors that measure flows in pipes. Since flows aggre- 

ate in tanks whose water levels are evaluated by level indication 

ransmitters (LITs), it is intuitively considered that the readings of 

hese two sets of devices are intimately related. In the meantime, 

e expect the existence of relations among FITs in adjacent stages 

ue to piping interconnections. The analyzer indicator transmitters 

AITs) measure the acidity and conductivity of the flow. It is empir- 

cally assumed that these inherent chemical properties have little 

mpact on the physical characteristics quantified in FITs and LITs. 

herefore, negativity is set as the ground truth value for all pairs 

ith an AIT as one of the elements. Finally, we incorporate peri- 

dicity as a link indicator based on the assumption that given one 

tate change causes a variation of another, they share similar cyclic 

roperties. For example, the water level in a tank varies in a peri- 

dic fashion due to the cyclic change of flows in its directly linked 
7 
ipes. Consequently, many links among the devices are assigned a 

alue of 1 denoting their existence and 0 otherwise. A portion (e.g. 

0%) of these links are sampled to construct �(C) and the rest is 

tilized for assessing the quality of the graph during the evaluation 

rocess. 

With both �(T ) and �(C) determined, the construction of the 

ase topology is considered complete, and the base graph is final- 

zed as G (V, E 0 = �(T ) ∪ �(C) ) . 

.2. Feature analyzer 

In a heterogeneous ICS structure covering a variety of devices, 

ifficulties in creating a general representation format for every 

ode in the network reside in the nodes’ profile incompatibility. 

urrent solutions tend to circumvent this issue via vector random- 

zation. While this might be effective under specific circumstances 

nd straightforward to implement, it undermines the model’s cred- 

bility as to how each device’s properties impact the model’s per- 

ormance. Therefore, to counter this disadvantage, we design the 

eature Analyzer module to produce a unified and interpretable 

epresenting paradigm that fuses a node’s features from multiple 

erspectives. 

We incorporate attributes of three categories in a node’s vector 

epresentation, namely the general process, controlling and mea- 

urement properties. Taking the sensors as an example, the gen- 

ral process features include the devices’ scope of interference; 

ontrolling properties exhibit their position as well as the rela- 

ionship with their direct neighbourhood in the network; Mea- 

urement properties form a set of data characteristics rendered by 

he readings, which are closely relevant to the respective industrial 

rocess. Below is the list of features extracted for all sensors with 

pplicable readings (See Table 5 ). 

Most of the features in Table 5 are fairly obvious to discern 

n the base topology and easily expressed in one-hot representa- 

ions (e.g. Given there are 4 stages in an industrial process, vec- 

or (0,1,0,0) refers to the 2nd stage as the 2nd entry in the vector 

s non-zero). However, measurement property extraction necessi- 

ates in-depth flow analysis. So far, numerous studies have sug- 

ested a decent likelihood of flow periodicity in industrial pro- 

esses, ranging from the devices’ communicating routine to their 

umeric stream patterns. Therefore, we select a couple of metrics 

haracterizing this periodic pattern along with a few subsidiary 

ata distributive properties as our measurement features, as shown 

n Table 5 . 

To specify all measurement properties, periodicity is flagged in 

 one-hot manner ((1,0,0) for non-constant periodic, (0,1,0) for con- 

tant, (0,0,1) for non-periodic). Period values are set to the corre- 

ponding period, zero and infinity with respect to periodic, con- 

tant and non-periodic streams. The max (min) value is computed 

s the average of the largest local maxima (smallest local minima) 

ithin all consecutive cycles for periodic streams, while defined as 

he global maxima (minima) for non-periodic streams. The mean 

nd the standard deviation of the information entropy are applica- 

le only to periodic streams and are set to zero and infinity with 

espect to constant and non-periodic streams. The definition of the 

nformation entropy in this context is presented as below: 
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Table 5 

Feature Specification. 

Categories Features 

General Process Properties Device type, Process & Sub-process 

Controlling Properties Controllers performing pooling 

Measurement Properties Periodicity, Period Value, Period Max(Min),Period Entropy Mean(Variance) 
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efinition 2. Given a finite sequence of N elements, the sequence’s 

losed range [ βmin , βmax ] is partitioned into k (1 < k < N) segments

here βmin and βmax correspond to the sequences global minima 

nd maxima. 	(k ) corresponds to the event in which an element’s 

alue falls within the k -th interval. The entropy E (k ) 
i 

is hereby de- 

ned as 

 

(k ) 
i 

← −
k ∑ 

i =1 

p( 	(i ) ) log(p( 	(i ) )) (4) 

The entropy defined in equation (4) characterizes the distribu- 

ive properties of a sequence and thus is employed as a measure- 

ent feature of sensor reading series. For simplicity, the range is 

ivided uniformly. 

In order to determine the period value in cyclic streams, we 

esign and develop the Sliding Window Entropy (SWE). For a per- 

ectly periodic sequence with period T , entropy defined in a partic- 

lar manner obtained within a window of size τ = nT (n ∈ Z + ) re-

ains constant. In other words, the entropy suggests zero variance 

t τ . Such a perfect scenario is rarely spotted in a real ICS setting. 

herefore as an alternative, we find the T that produces the most 

tationary entropy, measured by its Variance ( 
(Var) ) or standard 

eviation ( 
(SD ) ). The overall pipeline is presented in Algorithm 2 . 

lgorithm 2 Sequence Period Mining. 

nput : Data sequence S 

utput : Period Candidate T 

nsure: 

: Initialize the window size � as w 0 , window size upper bound 

 max , variation step size δ, sliding step 

ize δw 

, number of segments as k and the list of entropy L (E (k ) 
i 

) 

: while � is in the interval [ w 0 , w max ] : 

: L (ψ) ← [ k × δw 

for k ∈ [0 , 

⌊ 

length (S) −� 

δw 

⌋ 

) ∩ Z] 

: for all ψ in L (ψ) : 

: ε ← E (k ) 
i 

within window starting at ψ in S (calculated in 

4)) 

: L (E (k ) 
i 

) ← L (E (k ) 
i 

) + ε 
: end for 

: perform convexity check on L (E (k ) 
i 

) : We keep counts of 

onsecutive descents in L (E (k ) 
i 

) 

nd the succeeding rises to distinguish a convex curve from 

andom noisy fluctuations 

: if L (E (k ) 
i 

) shows local convexity: 

0: T ← L (E (k ) 
i 

) ′ s local minima 

1: return T 

2: else: 

3: clear L (E (k ) 
i 

) 

4: end if 

5: � ← � + δ
6: end while 

7: T ← w max 

8: return T 

The main idea of Algorithm 2 is to apply sliding windows to 

 stream of numeric values and determine the window size that 
8 
inimizes the entropy’s (Defined in Definition 2 ) standard devia- 

ion. The window size is originally set to w 0 and increases by step 

ize δ upon completion of each iteration (stopping at the upper 

ound w max ). During each iteration, the entropy E (k ) 
i 

is computed 

or all windows and the variance of the entropy sequence 
(Var) is 

tored in an array. A smaller 
(Var) value indicates a stronger ten- 

ency of convergence in the entropy sequence. As the window size 

ncreases, if 
(Var) consistently decreases to a local minima (deter- 

ined via convexity check in line 8), this indicates that the entropy 

t this setting is the most stationary, implying potential periodicity 

n the original sequence. The algorithm outputs the corresponding 

indow size as the resulting period value T . Once we get T , and

iven the set P of the T -length windows defined at all positions 

’s in the stream as regulated in Algorithm 2 , the rest of the mea-

urement property values are assigned or calculated as thus: 

max = 

1 

n P 

∑ 

∀ w ∈ P 
sup { S[ w : w + T ] } (5) 

min = 

1 

n P 

∑ 

∀ w ∈ P 
inf { S[ w : w + T ] } (6) 

(E 

(k ) 
i 

) = 

1 

n P 

∑ 

∀ w ∈ P 
E 

(k ) 
i 

(7) 

2 (E 

(k ) 
i 

) = 

1 

n P 

∑ 

∀ w ∈ P 
[ μ(E 

(k ) 
i 

) − E 

(k ) 
i 

] 
2 

(8) 

Note that the ρmax in (5) and the ρmin in (6) represent the 

veraged period maxima and minima. They are computed as an 

verage of all maximum(or minimum) values with respect to the 

liding windows (Note that sup { S[ w : w + T ] } refers to a window

tarting at w . The sup(. ) and in f (. ) indicates the upper and lower

ounds of the window’s numeric range). The μ(E (k ) 
i 

) in (7) and the 

2 (E (k ) 
i 

) in (8) stand for the mean and variance of the entropies 

omputed for all windows ( n P is the size of window set P ). 

After all features in Table 5 are ready, they are fused within 

 single vector 
−→ 

e (see (9) ) as a device’s initial vector represen- 

ation for subsequent graph learning. Taking the SWaT dataset as 

n example, there are totally 33 entries in this vector (See Fig. 5 ).

he number of entries with respect to the general, controlling and 

easurement features are 14, 6 and 13. All particular features and 

he quantity of entries they are assigned are highlighted in red 

ontext. For instance, in terms of measurement properties, the fol- 

owing features are specified: measurement type, periodicity and 

tatistic related features. They are each allocated 5, 3 and 5 entries 

n the vector representation (Particularly, 5 entries are assigned for 

he one-hot expression of 5 measurement types). 

 

e = 

−→ 

e G || −→ 

e C || −→ 

e M 

(9) 

Note that 
−→ 

e G , 
−→ 

e C and 

−→ 

e M 

in (9) are sub-vectors with respect 

o the general, controlling and measurement features defined in 

able 5 , and the symbol || denotes concatenate operation. 

It is notable that the numeric ranges of values with respect to 

ifferent f eatures can significantly deviate from each other, which 

ight cause the training algorithm to be heavily biased towards 

he feature values with dominant scales. To circumvent such dis- 

rimination, normalization is applied over all the feature values. 
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Fig. 5. Initial Feature Vector Structure (SWaT Showcase). 
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or simplicity, we introduce the arctangent scheme to achieve nor- 

alization (see (10) ). 

 

(i ) 
norm 

← 

2 

π
arctan ( e (i ) ) (10) 

In (10) , e (i ) is the i -th element in 

−→ 

e , and e (i ) 
norm 

is the corre-

ponding normalized value. Note that the value of i does not ex- 

eed e (i ) ’s dimension. 

By applying normalization, every feature is mapped to some 

alue within the range of (0, 1), hence shrinking the likelihood 

f commonly experienced training problems such as gradient 

anishing. 

Finally, the Principal Component Analysis (PCA) is applied to the 

ormalized vector to downsize the initial vector representation x 

or efficient graph learning (see (11) ). 

 [ 1 ×m ] = PCA ( e norm 

) (11) 

In (11) , x is the finalized initial vectors and m refers to x ’s di-

ension, which is usually smaller than the size of e norm 

. 

.3. Link inference decoder 

Given the devices’ initial vectors x ’s the Feature Analyzer pro- 

uces, there are extensive methods to infer the devices’ associa- 

ivity, such as the Bayesian Network and Support Vector Machine 

SVM). However, despite being simple and efficient, these meth- 

ds lack consideration of the devices’ associativity in a specified 

opological context, and are therefore insufficient for accurate link 

nference (graph learning) in complex networks including the ICSs. 

hus, to guarantee the method’s adaptivity to distinctive networks, 

e employ the GNN approach. 

To facilitate efficient graph learning, we utilize the uncompli- 

ated message passing layers (GCN, GAT and GraphSAGE), whose 

erformances are assessed and compared in Section 5 . Given all 

ntial vectors x ’s derived in (11) , the message passing layers con- 

erts the x ’s into new embeddings h ’s. To exemplify this process 

ith a 2-layer GCN using the ReLU activation, this transformation 

or node v i in graph G (V, E 0 ) is achieved as thus: 

sg 1 ( v i , v j ) = 

1 

d i 

∑ 

< v i , v j > ∈ E 0 & v i , v j ∈ V 

1 

d j 
x j (12) 

 

( 1 ) 
i 

= ReLU 

((
ms g 1 

(
v i , v j 

)
+ x i 

)
·W 

( 1 ) , < v i , v j > ∈ E 0 & v i , v j ∈ V 

)

(13) 

sg 2 ( v i , v j ) = 

1 

d i 

∑ 

< v i , v j > ∈ E 0 & v i , v j ∈ V 

1 

d j 
h 

(1) 
j 

(14) 

 i = ReLU(( msg 2 (v i , v j ) + h 

(1) 
i 

) · W 

(2) , < v i , v j > ∈ E 0 & v i , v j ∈ V ) 

(15) 
9 
Equations (12) and (14) regulates how a message from node v j 
o node v i is produced using v j ’s vector representation. They show 

hat each message goes through 2 phases of normalization: Phase 

 occurs at the message source v j in which the original vector is 

ormalized with v j ’s out-degree d j , and Phase 2 happens at the 

estination node v i which further normalize the message with v i ’s 
n-degree d i . Equations (13) and (15) exhibits how a node v i up- 

ates its own vector with the aggregated messages from its neigh- 

ours. Note that W 

(1) and W 

(2) are weight matrices with respect 

o the 2 message passing layers. The shapes of W 

(1) and W 

(2) are 

onfigured by the input’s dimension as well as the number of neu- 

ons assigned to each hidden layer. 

In our instantiation, we empirically fix the neuron quantity in 

ne message passing layer to 64 to keep the computational cost 

f the network manageable as well as to maintain a balance be- 

ween the states of overfitting and underfitting, while allowing for 

he number of layers to traverse all integer values from 2 to 4. 

he reason for limiting the number of layers within 2 and 4 is 

tated as follows: As every field device is directly connected to its 

ontroller (see Fig. 4 (b)), it takes as few as 2 moves for one pe-

ipheral field device to receive messages from another deployed 

n the same stage, given only one controller is available for each 

tage. With all controllers linked to a single node (the CRP), it 

osts as few as 4 moves for messages from one field device to 

ravel to its counterpart in a different stage. As the number of 

idden layers is a reflection of a node’s scope of visibility over 

he entire graph with each layer representing one move of mes- 

age passing, it is suggested and analyzed as a factor shaping the 

odel’s performance. For all nodes in the hidden layers, a ReLU 

ctivation function is adopted for nonlinear transformation. Fi- 

ally, the cross entropy loss is adopted for parameter optimization. 

he training process of the Link Inference Decoder is presented 

n Algorithm 3 . 

Note that to efficiently infer the devices’ in-depth links using 

he learnt embeddings, we adopt and compare the following de- 

oding mechanisms: 

(a) A Sigmoid function that takes in as input a single pair of 

earnt embeddings from nodes whose relations are of interest, and 

utputs a value indicating the odds of linkage, which is accom- 

lished with the scheme below. 

p( A i j ) ← sigmoid(h 

T 
i · h j ) (16) 

In (16) , A i j denotes the event that node i and node j are re- 

ated to each other. h i , h j are the learnt embeddings for node i and 

j respectively. Their inner product is fed into the sigmoid function 

enerating a value in (0, 1), implying the likelihood of a link’s ex- 

stence. Equilvalent matrix expression shows as thus, 

 link ← sigmoid( H 

T · H) (17) 

here P link is the probability matrix and H is the embedding ma- 

rix stacked up with all learnt embeddings. 
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Algorithm 3 Link Inference Decoder Training. 

Input : Base topology G (V, E 0 ) , initial vector representations x ′ s 
Output : Learnt graph G (V, E) 

Ensure: 

1: Configure the number of message passing layers η, upper bound 

of the number of epochs ep max . 

Initialize the epoch index ep = 0 , the list of weight matrices [ W 

(i ) ] , 

i ∈ [0 , η) ∩ Z 

2: while ep < ep max : 

3: for each weight matrix W 

(i ) with respect to each message 

passing layer: 

4: ∀ v i ∈ V : 

5: Compute messages from all v ′ 
i 
s neighbours v ′ 

j 
s with 

current vector representations 

(See (12) or (14)) 

6: Aggregate computed messages and update v ′ 
i 
s 

representation with W 

(i ) and ReLU activation 

(See (13) or (15)) 

7: end for 

8: Compute probability matrix P link (See 17) 

9: Compute cross entropy loss using P link 

10: Perform back propagation 

11: ep ← ep + 1 

12: end while 

13:Obtain the learnt links E from the finalized P link 

14: return G (V, E) 
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(b) A Softmax function applied to the output of a fully- 

onnected layer which maps a link embedding to a 2-dimensional 

ector. Note that a link embedding is computed from the vectors 

ith respect to the link’s endpoints via mean and max pooling op- 

rations. 

In summary, the Link Inference Decoder learns a complex graph 

eflecting the devices’ sophisticated process-oriented associativity. 

t outputs a new set of edges E that contains not only the a pri-

ri knowledge in the base topology, but the newly learnt in-depth 

elations as well. At this stage, the graph G (V, E 0 ) the Graph Pro-

essor outputs is updated to G (V, E) . 

.4. Anomaly detector 

Using the devices’ explicit process-oriented associativity, the 

ink Inference Decoder produces a graph whose links represent 

he convoluted relations among the devices in an ICS network. 

n order to accurately detect anomalous patterns hidden in the 

umeric data streams with respect to these devices via leverag- 

ng the information rendered by the produced graph, a second 

NN-based module is built. This module takes in the graph and 

he nodes’ preprocessed temporal expressions (with respect to any 

iff of interest) derived from the original data flow, produces em- 

eddings via message passing, and maps the learnt embeddings 

o their respective labels denoting whether an anomalous pat- 

ern is detected. Distinguished from many methods implemented 

ith composite frameworks, this scheme considers both tempo- 

al and spatial features with a single architecture, and hence is 

xpected to be both accurate and efficient in anomalous pattern 

ecognition. 

To create the preprocessed temporal expression χ for a specific 

ode v i ∈ G (V, E) at a particular time tick t , we take the v i ’s origi-

al numeric stream S, and employ a weighted averaging scheme to 

ompress the historical data snippet within a specified interval of 

ength N ending at this time tick t , denoted as S = S[ t − N + 1 : t] .

ssuming the influence of a historical numeric value decays with 
10 
ime, an exponential weighted average scheme is implemented so 

hat the produced expression better reflects the temporal charac- 

eristics of the original data flow (see (18) ). The size of the interval

 is intuitively configured to be large enough to cover the most 

ecessary temporal sequential features, which is 4300 for SWaT 

period values for most periodic flows) and 50 0 0 for WADI (em- 

irically set and subject to tuning). Then every n (set to 100 in this 

ork) consecutive values in this interval are condensed into a sin- 

le one via weighted averaging. In this scenario, the preprocessed 

emporal representations are of size N 

n 
= 43 and 50, with respect 

o SWaT and WADI datasets. 

[ i ] ← 

(i +1) n −1 ∑ 

j= i n 
e −a (n − j) S [ j] , i ∈ [0 , 

N 

n 
) ∩ Z (18)

Formula (18) shows how each of χ ’s elements is computed. In 

18) , values of n consecutive time ticks are integrated as one to 

chieve temporal compression. Note that the coefficient a is a bal- 

ncing factor shaping the amplitude of the exponential weights, 

hich is set as 4 in this work. 

Using the graph G (V, E) obtained from the Link Inference De- 

oder and the devices’ preprocessed temporal representations χ ’s, 

he Anomaly Detector conducts embedding learning via message 

assing. Similar to the Link Inference Decoder, we adopt efficient 

NN blocks (GCN, GAT and GraphSAGE) as our message aggrega- 

ors. The number of neurons in each hidden layer is set to 128, and 

he number of layers varies from 2 to 4. A ReLU is employed for 

onlinear activation and cross entropy loss is adopted for training. 

nstead of being fused in a joint decoder, every learnt embedding 

 is propelled into its exclusive Softmax layer to derive a label ˆ y 

0’s for normal and1 ′ s otherwise). In this fashion, each label is ex- 

ected to denote the state of a particular device at any applicable 

ime of interest, and hence device-level anomalous pattern recog- 

ition is achieved via distributed decoding. The Anomaly Detector’s 

raining process is described in Algorithm 4 . 

lgorithm 4 Anomaly Detector Training. 

nput : Learnt graph G (V, E) , preprocessed temporal representa- 

ions χ ′ s for all devices 

utput : Derived states ˆ Y 

nsure: 

: Configure the number of message passing layers η, upper bound 

f the number of epochs ep max . 

nitialize the epoch index ep = 0 , the list of weight matrices [ W 

(i ) 
ad 

] ,

 ∈ [0 , η) ∩ Z 

nitialize ˆ Y ← empty list 

: while ep < ep max : 

: for each weight matrix W 

(i ) 
ad 

with respect to each message 

assing layer: 

: ∀ v i ∈ V : 

: Compute messages from all v ′ 
i 
s neighbours v ′ 

j 
s with 

urrent vector representations 

: Aggregate computed messages and update v ′ 
i 
s 

epresentation with W 

(i ) 
ad 

and ReLU activation 

: end for 

: for each learnt embedding h i with respect to device v i : 
: ˆ y i ← sof tmax (h i ) 

0: ˆ Y ← 

ˆ Y + ˆ y i 
1: end for 

2: Compute cross entropy loss using ˆ Y 

3: Perform back propagation 

4: ep ← ep + 1 

5: end while 

6: return 

ˆ Y 
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Table 6 

Dataset Characteristics. 

Dataset #Stages #Field Devices Duration with Attack #Samples Anomaly Ratio after Temporal Condensation 

SWaT 6 51 4 days 449,919 0.3238 

WADI 5 123 2 days 172,801 0.3159 

Fig. 6. 
(Var) − T Curves (SWaT Showcases). 
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Fig. 7. Link Inference Decoder Training Loss Curves. 

Table 7 

Link Inference Baseline Comparison (Note: The message passing block adopted 

in the link inference decoder is shown in parenthesis. e.g. AHGA (GCN) indicates 

that GCN blocks are implemented). 

Methods Decoder Accuracy Precision Recall F1 

AHGA(GCN) Sigmoid 0.7753 0.6929 0.9887 0.8148 

Softmax 0.7977 0.7431 0.9101 0.8181 

AHGA(GAT) Sigmoid 0.7921 0.7241 0.9438 0.8195 

Softmax 0.7753 0.7059 0.9438 0.8077 

AHGA(GSAGE) Sigmoid 0.7809 0.7049 0.9663 0.8152 

Softmax 0.7865 0.7525 0.8539 0.8000 

PCA N/A 0.7564 0.2449 0.0723 0.1116 

Nonlinear-SVC N/A 0.7398 0.1000 0.0938 0.0968 

Bayesian N/A 0.8517 0.6731 0.5072 0.5785 

Cosine Similarity N/A 0.8452 0.5776 0.3121 0.4052 
. Evaluation 

Evaluation is conducted over the following open source 

atasets: the Secure Water Treatment dataset (SWaT) and the Wa- 

er Distribution dataset (WADI). Both datasets are developed on 

estbeds built for the simulation of multi-stage industrial processes 

water treatment for SWaT and water distribution for WADI). Each 

ataset contains columns of numeric streams, each of which as- 

ociated with a particular device. The values in every column are 

ampled with a 1-second interval for both datasets. The core fea- 

ures of the datasets are presented in Table 6 . 

.1. Feature extractor evaluation 

As illustrated in Section 4 , we introduce an IE-based methodol- 

gy to derive the cyclical properties in a device’s numeric stream. 

eriodicity is extrapolated and specific period values are observed 

t the point where IE’s standard deviation falls to a local valley. 

he variance curves 
(Var) − T of devices exhibiting periodic and 

on-periodic properties are presented in Fig. 6 . We observe that 

he local convexity of the 
(Var) − T curves for particular devices 

e.g. LIT-101) is apparent in Fig. 6 , and thus the period values with

espect to these devices are determined as the local minima of the 

urves and serve as a basis for the computation of other periodic 

eatures. The LIT-101 in SWaT, for example, takes 4300 as its ap- 

roximated period. 

.2. Link inference accuracy 

The Link Inference Decoder is implemented and trained with 

ultiple types of classic GNN blocks: GCN, GAT and G-SAGE. Dur- 

ng the training process, the loss converges rapidly for all three 

NN scenarios (GCN, GAT and G-SAGE). Taking the GCN as an 

xample, by tuning the number of GCN layers (2, 3, 4 layers) 

nd performing a 20% dropout, its loss curves are exemplified 

n Fig. 7 . 

The performances of the Link Inference Decoders trained with 

ifferent encoding and decoding blocks are compared against the 

ink prediction baselines below: (a) the Bayesian Classifier, (b) the 

onlinear Support Vector Classifier (SVC), (c) the principal com- 

onent analysis (PCA) and (d) the Cosine Similarity Analysis. The 

esults are shown in Table 7 . 
11 
Our observations are as follows: 

1) In terms of decoding mechanisms, the AHGA models imple- 

menting sigmoid inference decoders tend to exhibit an out- 

standing rate of recall (mostly above 0.9), while suffering from 

a relatively inferior precision (approximately between 0.60 and 

0.75). This indicates that with sigmoid decoders employed, the 

AHGA is capable of preserving the majority of the a priori link- 

age knowledge suggested in the base topology, learning most 

of the connectivity reflected by the process-oriented conditions 
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Fig. 8. Correlation Inference Efficiency. 
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(which leads to a high recall), as well as implying new in-depth 

associations the aforementioned conditions fail to cover, which 

is why the precision rate is relatively low. From the perspec- 

tive of link learning, this result is desirable as additional so- 

phisticated links are successfully learnt from the devices’ ex- 

plicit process-oriented relations. The AHGAs employing Soft- 

max decoders, on the other hand, produce a more balanced 

precision/recall output. Nevertheless, their ability to generalize 

over the a priori knowledge is not as great compared to the 

models using sigmoid decoders, as reflected by their rates of 

recall. 

2) With all heterogeneous devices profiled via fusion of specific 

properties into their vector representations, the model’s inter- 

pretability is improved, as every vector expression explicitly re- 

flects how some device functions in specified industrial pro- 

cesses, as well as how it impacts other devices in the network. 

The learnt graph, in this case, is better tailored to the industrial 

processes, rather than some random topology which cannot be 

interpreted. It is implied that this graph provides a more reli- 

able basis for subsequent anomalous pattern recognition. 

3) Among all the baselines displayed in Table 7 , the AHGA ap- 

proaches generally outperform the rest with an F1 gain of ap- 

proximately 22.15%. This discrepancy resides in the methods’ 

operational principles. The Cosine Similarity, for instance, takes 

the devices’ vectorized profiles and directly performs pair-wise 

similarity computation without considering any relational char- 

acteristics in specified industrial processes. The Bayesian and 

Nonlinear-SVC, on the other hand, fabricates link vectors using 

the devices’ profiles and conduct classification over all the links. 

Similarly, these approaches treat each link as an independent 

entity and do not leverage the devices’ process-specific associa- 

tivity. Therefore, it is claimed that the AHGA is a better fit to 

deriving relations in specified industrial scenarios. 

.3. Link inference efficiency 

In order to assess the AHGA’s graph learning efficiency, we 

easure the amount of test time consumed with respect to all 

HGA variations and other baseline methods (See Fig. 8 ). 

Observation implies that the Softmax-based AHGAs are approxi- 

ately 33% less efficient with a decoding time of around 4.5 msecs 

han the ones using a sigmoid decoder, which takes about 3 msecs. 

he Graph-SAGE being an exception, it is intuitively assumed that 

he Softmax decoder should work longer due to the additional 
12 
ully-connected layer as well as the required exponential computa- 

ion in the Softmax function. In comparison with other baselines, 

he AHGAs are very efficient at test phase despite their complex 

raining workflows. This may arise from the difference between 

he AHGAs and other baselines stated as thus: Once trained, the 

HGAs enable link inference via only a few steps of operations 

n the matrix level, which is minor compared to other methods 

hat have to perform element-wise computations (e.g. the pair- 

ise similarity computation of 2 specific node vectors in cosine 

imilarity, as well as the element-wise input processing in Bayesian 

nd Nonlinear-SVC). 

.4. Anomaly detection accuracy 

Implemented with distinct message passing blocks in the 

nomaly Detector, the AHGA’s ability to recognize anomalous pat- 

erns is evaluated against the baselines as follows: (a) K-Means, (b) 

egular Graph Convolutional Network (GCN), (c) Graph Attention 

etwork (GAT), (d) Graph Sample and Aggregate Model (Graph- 

AGE), (e) Topology Adaptive GCN (TAGCN), (f) Flow-Topology GCN 

FT-GCN), (g) Isolation Forest and (h) One-class SVM (OCSVM). As 

pplicable, the graph inputs for all GNN baselines are initialized as 

ig. 4 . The results are summarized in Table 8 . 

The following insights are obvious: 

1) The AHGAs outperform their GNN counterparts (GCN, GAT, and 

GSAGE) in most evaluation metrics. For example, the AHGA us- 

ing GSAGE detector achieves an F1 gain of approximately 4.47% 

(SWaT) and 13.64% (WADI) over the regular GSAGE model. It is 

speculated that this improvement arises from the addition of 

the Link Inference Decoder which incorporates the devices’ so- 

phisticated associativity in the graph used for anomalous pat- 

tern recognition. In this graph, any pair of devices deemed 

related with each other are directly linked. In this case, the 

availability of information from related devices is drastically in- 

creased as it takes only one message passing step to obtain, 

and therefore, this information can be more directly and suf- 

ficiently encoded in a node’s embedding vector used by the 

AHGA to detect anomalous patterns. As to the GCN, GAT and 

GSAGE where related devices are not immediately connected, a 

node’s embedding vector suffers from a loss of in-depth corre- 

lational information due to the redundant message passing it- 

erations across irrelevant nodes, and therefore leads to less de- 

sirable pattern recognition results. 
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Table 8 

Anomaly Detection Baseline Comparison. 

Methods 

SWaT WADI 

Accuracy Recall Precision F1 Accuracy Recall Precision F1 

AHGA(GCN)-GCN 0.7838 0.6165 0.8009 0.6967 0.8207 0.7330 0.8138 0.7713 

AHGA(GCN)-GAT 0.7883 0.6072 0.8855 0.7204 0.7495 0.5794 0.8292 0.6822 

AHGA(GCN)-GSAGE 0.8198 0.6675 0.8918 0.7635 0.8325 0.7589 0.8196 0.7881 

GCN 0.7687 0.5733 0.8587 0.6875 0.7189 0.5260 0.7859 0.6302 

GAT 0.7888 0.6106 0.8704 0.7177 0.7327 0.5499 0.8161 0.6570 

GSAGE 0.7887 0.6103 0.8741 0.7188 0.7295 0.5442 0.8122 0.6517 

TAGCN 0.7630 0.5538 0.8692 0.6766 0.7277 0.5372 0.8115 0.6465 

FT-GCN 0.7641 0.5587 0.8754 0.6820 0.7345 0.5383 0.7528 0.6277 

OCSVM 0.6519 0.5275 0.5321 0.5298 0.6466 0.5352 0.5371 0.5361 

Isolation Forest 0.6278 0.5271 0.5270 0.5270 0.6172 0.5393 0.5402 0.5398 

K-Means 0.6344 0.5295 0.5304 0.5299 0.6145 0.5122 0.5136 0.5129 

Fig. 9. Anomaly Detection Efficiency. 
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2) In comparison with TAGCN and FT-GCN, the AHGA also achieves 

superior results. In TAGCN, multiple convolutional kernels are 

adopted to extract a node’s local features from neighbours of 

distinct distances. Although this enables the TAGCN to update a 

device’s profile with information of distant nodes, the amount 

of such information obtained in this manner is not as suffi- 

cient as direct linkage implemented in the AHGA given identical 

message passing settings. Similar statements apply to the FT- 

GCN which adopts multiple TAGCN channels as its core encod- 

ing mechanism. Even though the FT-GCN’s overall performance 

is slightly better than the TAGCN for its multi-view setting, the 

correlations among distinct devices are not sufficiently learnt 

compared to the AHGAs. 

3) The AHGAs’ performance also surpasses the outlier detectors 

(OCSVM, Isolation forest) and the K-Means clustering method, 

in that the profile of each device is directly used for boundary 

computation in OCSVM, IForest and K-Means, with no device- 

wise relationships taken into account. In this fashion, these 

methods do not effectively adapt to the ICS scenarios in which 

devices are highly associated. 

.5. Anomaly detection efficiency 

Finally, we assess AHGA’s runtime efficiency in anomalous 

attern recognition (training/test time consumption) and the 

esults are illustrated in Fig. 9 . It is apparent that the AHGAs are

alf as efficient as their counterpart GNN models in runtime. This 

esults from the difference in the graph’s linkage complexity. As 

he AHGAs has more links in the graph that represent the devices’ 

n-depth process-oriented relations, it is not surprising that they 

re more time-consuming than the GNN baselines without graph 

earning. However, it is a drawback that needs to be resolved 

o meet the real-time requirements of ICS anomalous pattern 

etectors. 
13 
. Conclusion 

In this work, we investigate the problem of anomalous pattern 

ecognition in the data streams of the ICS devices. A comprehen- 

ive framework named the AHGA is proposed, which integrates a 

raph processor, a feature analyzer, a link inference decoder and an 

nomaly detector. The AHGA has merit compared to other mod- 

ls in that it captures the in-depth associativity among hetero- 

eneous ICS devices using the explicit process-oriented relations 

mong them. This associativity exhibits more interpretability given 

t is derived from the devices’ explicit features reflecting how they 

unction in the specified industrial processes as well as how they 

ay influence each other. Using the learnt associativity, the devices 

re better aware of how they are related to the rest of the net- 

ork, which serve as a more reliable basis for anomalous pattern 

ecognition. Furthermore, in terms of granularity, the AHGA is able 

o conduct device-wise anomalous pattern detection, differentiated 

rom most of the NN baselines operating on the coarse-grained 

ystem’s level. Our evaluation demonstrates the AHGA’s superior- 

ty in anomalous pattern detection, with an F1 gain of 4.47% and 

3.17% over the current baselines with respect to the SWaT and 

ADI datasets. The drawback of the AHGA lies in its extra runtime 

onsumption caused by the increasing complexity of the learnt 

raph reflecting the devices’ in-depth relations. Moreover, as the 

 priori knowledge for different industrial processes can be rather 

istinctive, it is challenging to create to a set of conditions that 

eneralizes over all processes. To address these deficiencies, our 

uture work involves studying the commonality of disparate indus- 

rial scenarios, and attempting to derive a general set of conditions 

or graph learning that applies to all or the majority of the types 

f industrial processes. In addition, we shall develop schemes of 

e-regulating message passing paths and reducing the quantity of 

odes (via clustering or other approaches) to optimize the AHGA’s 

untime efficiency. 
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