Pattern Recognition 141 (2023) 109661

journal homepage: www.elsevier.com/locate/patcog

Contents lists available at ScienceDirect

Pattern Recognition

Process-Oriented heterogeneous graph learning in GNN-Based ICS n
anomalous pattern recognition

Shuaiyi L(y)u?, Kai Wang"*, Liren Zhang", Bailing Wang®*

A Faculty of Computing, Harbin Institute of Technology, China
bSchool of Computer Science and Technology, Harbin Institute of Technology, Weihai, China

ARTICLE INFO

Article history:

Received 19 November 2022
Revised 28 March 2023
Accepted 29 April 2023
Available online 2 May 2023

Keywords:

Fine-Grained anomaly recognition
Process-Oriented associativity
Heterogeneous graph learning
Industrial control systems

ABSTRACT

Over the past few years, massive penetrations targeting an Industrial Control System (ICS) network intend
to compromise its core industrial processes. So far, numerous advanced methods have been proposed to
detect anomalous patterns in the numeric data streams with respect to the heterogeneous field devices
involved in the industrial processes. These methods, despite reporting decent results, usually conduct
system-wise detection instead of fine-grained anomalous pattern recognition at the device level. Further-
more, lacking explicit consideration of the exclusive process-related features with respect to each differ-
entiated device, the fitness of their application in specified industrial processes is undermined. To tackle
these issues, a GNN-based Attributed Heterogeneous Graph Analyzer (the AHGA) is designed to perform
device-wise anomalous pattern detection via in-depth process-oriented associativity learning. The AHGA's
framework is constructed with four building blocks: a graph processor, a feature analyzer, a link inference
decoder, and an anomaly detector. Its performance is assessed and compared against multiple link infer-
ence and anomaly detection baselines over 2 popular ICS datasets (SWaT and WADI). Comparative results
demonstrate the AHGA's reliability in capturing sophisticated process-oriented relations among heteroge-
neous devices as well as its effectiveness in boosting the performance of anomalous pattern recognition
at device-level granularity.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Security issues in the industrial control systems (ICSs) have
aroused considerable attention in recent years [1,2]. Over the past
decade, penetrations attempting to compromise the core industrial
processes supervised by the ICSs have seen a drastic ascension.
In light of the potentially catastrophic outcome such penetrations
may lead to (e.g. damage/destruction of critical infrastructures, per-
sonnel casualty, economic losses, etc.), deriving reliable detection
schemes against these hostile activities in order to secure the ICS
processes is of paramount importance universally. As the effect of
these penetrations, such as zero-day attacks, can usually be re-
flected via the numeric variations in the data streams associated
with the related field devices, say, the series of sensor readings and
actuator operational modes (See Fig. 1), our demand is equivalent
to recognizing the deviated and potentially hazardous patterns in
these numeric streams.

Anomalous pattern recognition in ICS data streams have been
investigated from extensive perspectives ranging from simple clas-

* Corresponding author.
E-mail address: dr.wangkai@hit.edu.cn (K. Wang).

https://doi.org/10.1016/j.patcog.2023.109661
0031-3203/© 2023 Elsevier Ltd. All rights reserved.

sic approaches to advanced machine and deep learning solutions
[3]. Leveraging the periodic properties rendered by the ICS traffic,
the majority of the classic approaches, such as the DFA series [4],
etc. convert the original numeric series into cycles of states, and di-
agnose any transitional pattern that deviates from the designated
flows in the produced cycles. While simple in principle, these so-
lutions are subject to potential state explosion in case the origi-
nal data exhibits overly convoluted variational patterns. Moreover,
these methods only process individual sequences and are hence
blind to the in-depth correlational characteristics among different
field devices, for which their detection results do not present suf-
ficient credibility.

In order to effectively extract and utilize the in-depth relation-
ships among distinct data streams, Neural Network (NN) based
deep learning approaches have been widely investigated for ICS
anomalous pattern recognition [5-7]. In general, these methods
consist of an input layer that takes in the numeric values asso-
ciated with all devices as the initial features, a chain of encoding
layers or more advanced processing blocks depending on the spe-
cific algorithm, and a joint mapping module that produces the pre-
dicted labels with respect to the given input (See Fig. 2). Such NN-
based models [8,9] are mostly designed to encode both the tem-

https://doi.org/10.1016/j.patcog.2023.109661
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109661&domain=pdf
mailto:dr.wangkai@hit.edu.cn
https://doi.org/10.1016/j.patcog.2023.109661

S. L(y)u, K. Wang, L. Zhang et al.

Pattern Recognition 141 (2023) 109661

Actuator2 i HW

Field Devices Numeric Streams
-——1 - e I o e e o N e e e
AR
Sensoed ‘: il Jr| i lj \ \.J '{ IJ A\ JI]W \ ‘[J’LJI |
1l | |
: || | : 1
Eapeee vl e
Sensor 2 F ke | ”. "'
I
]
I

ﬂ @mﬂrﬂw i

W il

alilall, : '
Sensor 3 IR | 1 !
L N N AR R
Anomalous Patterns Benign Patterns L. Anomalous Patterns 4J
Fig. 1. Field device numeric streams with benign and anomalous patterns.
. Joint
Encoding Layers or Mapbin
Features x Input Layer Advanced Internal PP . g
. . (Decoding)
Learning Mechanism
Layer
= —— = ——— —
| — P — — I
N = | ® 1| & . @
{4 4 &
= ®|
! 4] v
: Predicted
vudue — | & ‘ eeep ! H —_—
: ! = " | - Label y
| —| @ 11 & |6 @ .
® . I o ™ e || P
L] L] - L] L]
® . Il e . e || —
. |
= @ & @ [
) e o) I

Fig. 2. Outline of neural network ICS anomaly detection scheme (Input: Data streams for all ICS devices. Output: Single system-wise predicted label).

poral and spatial properties among distinct numeric streams, and
they report promising results in many metrics. Nevertheless, most
of these methods, to the best of our knowledge, inspect system-
wise anomalies in an ICS scenario, which means the produced in-
ference results reflect the states of an entire system, rather than
an individual device. Such results do not offer valuable insights in
accurate retracing and efficient responding to the occurred anoma-
lies.

Recent advances in the Graph Neural Networks (GNNs) have
provided massive new opportunities in ICS anomaly detection
[10,11], in light of their powerful ability to deal with random
graph-structured data [10]. As differentiated from the classic NN
approaches, a GNN’s input not only includes the device’ data
streams, but also a graph showing how different devices are con-
nected to each other. Empirically, how well a GNN model performs
can be influenced by the quality of the input graph, as it is the core
media that defines how the nodes transmit messages to each other.
So far, there are extensive GNN methods that aim at developing
graph regulating schemes for adversary detection in the ICSs or
IoT networks, such as the GDN [12] that dynamically updates the
graph based upon the learnt associativity, and the FT-GCN [13] that

generates graphs using the profiles of the traffic flows. Effective as
they are claimed in their own specified problem, when it comes to
securing specific industrial processes, however, their input graphs,
typically randomly initialized, do not reflect the devices’ explicit
relationships in the specified process (For example, the value of a
tank level indicator in a water treatment stage is tightly associated
with the numeric reading of a flow indicator on a pipe attached
to the tank). Potentially, this impairs the quality of the graph upon
which subsequent anomalous pattern detection is based.

To address the aforementioned problems in the current NN
and GNN-based anomalous pattern recognition for the ICS pro-
cesses, this paper aims at designing a compound anomaly detec-
tor named the Attributed Heterogeneous Graph Analyzer (AHGA),
which achieves device-wise (node-level) instead of coarse-grained
system-wise anomalous pattern recognition via in-depth process-
oriented associativity learning. By applying distributed decoders
for every individual node rather than using a joint mapping block,
the AHGA can be trained to deduce the states of every device of
interest for any applicable jiff, which is a much more challenging
task than making inferences for an overall architecture. Further-
more, in order to tackle the inferiority of current GNN approaches

S. L(y)u, K. Wang, L. Zhang et al.

that the graph’s quality can be negatively affected by existing ini-
tialization approaches (such as random initialization), the AHGA is
designed to utilize the devices’ explicit relations in specific indus-
trial processes as the a priori knowledge for deriving the further
sophisticated associativity among heterogeneous devices, and to
generate the graph that reflects this advanced associativity. There-
fore, with these process-oriented relations considered, the AHGA
has a better perception of how different devices in an ICS net-
work are correlated with each other in terms of their roles and
functionality, and is hence better tailored to the distinctiveness of
disparate industrial processes. To the best of our knowledge, this
is one of the first works to leverage the devices’ explicit process-
oriented relationships to improve the quality of the graph used
for ICS anomalous pattern recognition. The AHGA's architecture is
composed of the following primary components: (a) A graph pro-
cessor which initializes the graph structure based upon real world
ICS architectures. (b) A feature analyzer that creates a uniform
initial vector representation for all heterogeneous devices in the
graph, based upon the captured data streams with respect to these
devices. In this module, an entropy-based scheme is developed for
the derivation of a particular set of statistical properties as part
of a vector’s entries. (c) A link inference decoder that learns the
graph for anomaly detecton, and (d) An anomaly detector that op-
erates on the graph produced by the link inference decoder and
conducts node-level anomalous pattern recognition via distributed
decoding blocks.

The key contributions of our work can be summarized as fol-
lows:

1) We perform comprehensive preprocessing on the data flows
captured on ICS testbeds, and define a multi-dimensional fea-
ture extraction scheme to profile heterogeneous field devices.
Specifically, we present an entropy-based approach for period-
icity mining, which is implemented and validated with the pro-
vided device readings.

2) We design the AHGA, a compound framework that achieves
fine-grained device-level anomalous pattern recognition via
graph learning and distributed decoding. Specifically, the de-
vices’ explicit process-oriented relations are used as a basis for
the AHGA to infer the in-depth associativity among the devices.
This learnt associativity is further utilized to conduct device-
wise anomalous pattern recognition via distributed decoding.
Using the SWaT and WADI datasets, we evaluate the AHGA's
ability to detect anomalous patterns in ICS streams via asso-
ciativity learning. Comparative results on state-of-the-art base-
lines have justified the positive effect of utilizing the de-
vices’ process-oriented relations on accurate associativity learn-
ing and reliable anomalous pattern recognition.

w
—

The rest of the paper is structured as follows. Section 2 pro-
vides a summary of GNN’s preliminaries and an overview of re-
lated work regarding correlation analysis in ICSs; In Section 3, we
define the problem to be addressed; In Section 4, we explain the
structure of AHGA; Section 5 presents the model evaluation results
and highlights relevant analysis; Section 6 concludes the article.

2. Preliminaries and related work

In this section, the GNNs’ fundamentals and related work on
ICS anomaly pattern detection are overviewed. For the clarity of
presentation, all symbols used in this section and their annotations
are displayed in Table 1.

2.1. Preliminaries

The GNNs perform message passing on graphs to enrich the
nodes with their local information. During each round of message

Pattern Recognition 141 (2023) 109661

passing, every node in the graph update its representation by ag-
gregating messages from its immediate neighbours. This represen-
tation is a contextual mixture of a node’s own properties as well as
its awareness of its surrounding nodes and edges. Suppose hi(,k“)
is the representation for node v at the (k+ 1)-th GNN layer, it as-
sociates with the k-th layer in the following manner:

h{*1 — UPDATE(h¥, AGGR(u € N(v), MSG(h", hP e(u, v))))
(1)

where N(v) is the set of all nodes directly linked to node v, and
e(u, v) represents the edge connecting nodes u and v.

In (1), MSG(.) formulates the message from a particular neigh-
bour node u by extracting important information from u and
v and the edge connecting them. AGGR(.) gathers the messages
from all vs neighbours in a certain way, and produces an output
that is subsequently absorbed in the node vs own embedding in
the UPDATE(.) operator. Note that there are extensive methods
to implement these operators, some of which are introduced in
Section 2.2.

2.2. Related work

So far, massive deep learning methods have been introduced
to explore the in-depth features in data streams to yield desir-
able event detection results [14-16]. For instance, a deep adver-
sial anomaly detection (DAAD) method [17] is proposed to learn
task-specific features capture the marginal distributions of normal
data in detecting sequantial anomalous patterns. A black-box at-
tack scheme (BBAS) [18] is designed to assist improving the DNN’s
reliability in detecting adversarial example attacks. In order to de-
tect anomalous patterns in ICS and IoT data streams, numerous ap-
proaches are introduced including a compound framework imple-
mented with multi-attentional DNN blocks [19], a weighted ran-
dom sampling approach using a generalized sampling algorith-
mic framework [20], two semi-supervised hybrid deep learning
methods (AE-GRU and GAN-RNN) [21], an LSTM-based architec-
ture (ClozeLSTM) [22], an unsupervised approach combining neural
networks and a one-class objective [23], etc. In addition, to tackle
false pattern injection in the ICSs, a robust spatial-temporal detec-
tor (AD-RoSM) [24] is developed. A light-weight federated learning
based anomaly detector (FATRAF) [25] is designed to detect irreg-
ular patterns in time-series data. An ML-based anomaly detector
that leverages the system’s design knowledge [26] is proposed to
improve the model’s detection accuracy.

The GNN'’s application in anomaly pattern recognition has been
comprehensively investigated [10,27]. For example, a novel meta-
graph based convolutional scheme named Meta-GNN [28] is intro-
duced to extract and incorporate complex local properties in or-
der to capture higher-order semantic relationships in the network.
A Deep Cluster Infomax approach is proposed for node represen-
tation learning [29] in which representation learning and state
classification are separately trained. Specifically designed for ICS
anomaly detection scenarios, the Graph Deviation Network (GDN)
[12] considers inter-sensor relationships as a key factor in detect-
ing anomalous events via studying a high-dimensional time series.
Likewise, the MST-GNN [30] performs feature extraction over mul-
tivariate time series data considering the properties of each in-
dividual series. In order to create robust low-dimensional repre-
sentations, a new contrastive-based unsupervised graph represen-
tation learning (UGRL) framework [31] is designed that associates
downstream tasks to the learning process via contraints. A modi-
fied strategy, e-ResGAT [32] is proposed on the basis of the regular
GAT via residual learning. In addition, to improve the quality of the
features used for message aggregation, the AsGNN [33] is devel-
oped to perform feature selection via normalization, and the GLIN

S. L(y)u, K. Wang, L. Zhang et al.

Table 1
Symbol Annotations.

Pattern Recognition 141 (2023) 109661

Symbols Annotations

v, u Nodes in a graph

h,(,k’ Vector representation of node v after the k-th round of message passing is complete

N() v's immediately connected nodes in a the graph

e(u,v) An link connecting nodes u and v

MSG(.) Operator that creates a message between a specified pair of connected nodes

AGGR(.) Operator that aggregates the messages produced between one node and all its connected neighbours

UPDATE(.) Operator that combines a node’s own representation and the aggregated message from its neighbours
Table 2

Symbol Annotations.

Symbols Annotations

G Graph to learn

Vv Set of all vertices (devices) in the learnt graph G

E Set of all links in G relecting the learnt relationships among the devices

Eo Set of all links reflecting a priori knowledge

S Set of all relations that may exist, apart from the links repesenting the a priori knowledge
C Set of all conditions defining explicit process-oriented relations among the devices

[34] is designed to utilize a graph’s global properties in improving
the model’s detection accuracy. Further, to reduce the scale of the
graphs for efficient computing, the Graph Reduction Neural Net-
work [35] is proposed to perform structural pattern recognition.

Despite being highly advanced and achieving good results, the
aforementioned solutions mostly apply to coarse-grained system-
level anomaly detection for which they are incapable of locating
anomalous devices, significantly degrading their practicality. There-
fore, this work aims at deriving a comprehensive solution to detect
anomalous patterns via in-depth associativity learning. Particularly,
the proposed method is able to yield results for specific devices in-
stead of deriving system-level anomaly detection.

3. Problem statement

In this section, the problem to be addressed as well as some
intuitive ideas behind the proposed solution (AHGA) is introduced.
To make relevant descriptions clear, all symbols that appear in this
section are listed in Table 2 along with their annotations.

As an anomalous pattern recognition solution exhibiting
promising prospects, the GNNs enable embedding learning via
message passing on a predefined graph topology G(V,E). The
purpose of designing the AHGA is to derive a feasible and
process-wise interpretable mechanism to produce a proper G(V, E),
on which anomalous pattern recognition is conducted. Defining
G(V,E) naturally breaks down to determining the node set V and
the edge set E. In case of abstracting each ICS device to a node
in the graph, determining V is trivial as the set of ICS devices re-
lated to a particular industrial process usually remains stationary
over time, due to the convention that addition or removal of de-
vices is rare in an ICS environment to circumvent undesired influ-
ence on the process. Therefore, our first primary task addressed in
this paper is to define the link set E so that the graph serves as
an appropriate reflection of the sophisticated relationships among
heterogeneous ICS devices. That said, this problem is defined as
follows:

Definition 1. Given an industrial control network G(V, Ey), where
V is the set of individual hosts, controllers, or field devices, and
Ey the set of known relations (such as direct physical commu-
nications) among all elements in V. i.e. Ve € Eg, link(e) =1 (Op-
erator link(.) returns 1 on es existence or O otherwise). Let S =
V x V\Ey, and C is the set of field conditions. Find E € S so that
Ve e E, link(e|C) = 1.

In this paper, we leverage the devices’ explicit process-oriented
associativity to determine the graph for subsequent anomalous
pattern recognition. In a water treatment process, for instance, we
may consider that the sensor measuring the water level of a tank
and the sensor measuring the water flow in the pipe connected to
the tank are associated with each other in their readings. On the
other hand, we may not expect much connection between the set
of sensors operating in one location and those in another, on the
assumption that the processes in disparate geographical locations
operate independently. In Definition 1, C is the set of empirically
regulated conditions based on the devices’ relations exemplified as
above. The set does not incorporates all the relationships among
the set of nodes V. However, it serves as a heuristic for the model
to learn a broader variety of relations during the training process.
Therefore, the edge set E produced by the AHGA is supposed to
cover most or all connections suggested by C, as well as other re-
lations not directly defined in it. The produced E is then utilized in
downstream anomaly detection tasks.

As the second core task, the AHGA conducts anomalous pattern
recognition over the numeric streams with respect to the ICS de-
vices using the produced graph G(V,E). More sophisticated links
incorporated in G, the AHGA is able to obtain a more in-depth per-
ception of the industrial process, allowing a boost in the results’
reliability.

4. Model design

The AHGA consists of four core modules respectively named as
a graph processor, a feature analyzer, a link inference decoder and
an anomaly detector. The graph processor abstracts the a priori
knowledge on the devices’ relations into a graph topology, which
serves as a basis for subsequent graph learning. The feature ana-
lyzer creates unified profiles for heterogeneous devices with com-
prehensive information obtained from numerous respects, includ-
ing the devices’ roles in the industrial process, statistic properties
of their numeric streams, etc. The output of the graph processor
and the feature analyzer is then passed onto the link inference de-
coder (implemented as a multi-layer GNN structure) to learn the
devices’ complex process-oriented relations, with which the AHGA
gains a comprehensive view over the industrial process. Finally,
these newly learnt relations are utilized by an anomaly detector
(a second multi-layer GNN-based module) to recognize anomalous
patterns with respect to each device. The overall structure of AHGA

S. L(y)u, K. Wang, L. Zhang et al.

Graph

Pattern Recognition 141 (2023) 109661

1
Base
1 <
Processor nGP?i;h i Layer 1 Layer2 Link Imﬁenem&
¥
: dy,: determined by fhe initial vecter's dyg; 64 Decoder
? . dyz 5 dyz: 2
1 y A o A L Learnt Node
1 Dimension Dimension .
1 v :“ hP‘l:ﬁge Transformation [l\ll’lzﬂge Transformation | Eal o
: - 1 ne dyy —dyy sng dyy — dyy [x1 [| - |
O O - o © B
£ ! il e =) EXEREN
Feature Device & 'L O i wiie $ g N -
ProcessInfo || L —————— " , -
Analyzer | Eumtion W wiire 3y SN, @ (- [z |
-
oo Pre A . - /
ognat [e || F 11 O % | © 0 ¢ ¥
pe ; EIENEN | R 4 I 7 . —
to 771 Coniraling 1 ENEREE | O . - . Associativity
t, 1) Broperties | ENENEE 9 / \ -) Learning
¢, 't 49 EDEEE |
. i ¥ Statistial | ENENEN l
3 l' Feature : Initial Vector ! |mmecmmecccmecmee= -
? 2 | Exiraction Representations : Y > N Generated 1
s P;aiyqiiy : / ? v Graph :
be el / \ | Blue Sk Line:
.] 1
. | (. Physical
Cm { /“\ 4o Connection

I ; I
— D /

: *!‘ }'// Red Dashed Curve: |

1 Slggeshell 1

Weighted Average

Compression
w(i) « el(ti)

: Temporal \
e

eee [(
o'
‘\“4— -
-
...‘

g

f &

E.

Fig. 3. AHGA Structure.

is presented in Fig. 3. Note that in order to give clear presentation,
core symbols that appear in this section are listed in Table 3 along
with their annotations.

4.1. Graph processor

The graph generator constructs a base topology G(V,Ej) ex-
hibiting the devices’ explicit process-oriented features on the ba-
sis of which subsequent graph learning is conducted. Specifically, 2
types of features are considered: physical communications and nu-
meric stream correlations. In terms of physical communication, for
instance, direct data transmission between a sensor and its super-
vising controller determines a solid physical link of communication
between them. As to the stream numeric correlations, on the other
hand, a sensor measuring a tank’s liquid level is numerically cor-
related with another sensor that records the flow volume of a pipe
linked to this tank.

With both respects taken into account, the edge set Ey of the
base topology can be interpreted as follows (see (2)):

Eo=vDuypO (2)

where W(D is the set of all physical communication links and W ©
the set of stream numeric correlations. Equation (2) indicates that
link set of the base topology is the union of ¥ and ¥©,

To determine the devices’ physical links of communication
W@ 3 general hierarchical topology (see Fig. 4(a)) with multi-

ple layers featuring distinct functions is adopted as a reference.
As shown in Fig. 4(a), atop the structure is an aggregation of all
remote management systems typically deployed within a corpo-
rations internal network, which are usually bounded within the
cloud periphery for the purpose of observation or exhibition. This
layer is conventionally prohibited to directly interfere with the
field process on the lower level. Immediately below it is a layer
of controlling units that continuously interact with the peripheral
field devices (sensors and actuators) on the bottom layer during
operation of an industrial process.

In order to create a general base topology that adapts to the
majority of typical ICS architectures in terms of devices’ physical
communication, we encapsulate everything above the controlling
layer into one single node denoted as the central reference point
(the CRP, and denoted as &) while mapping all other devices to
their own corresponding nodes. This finalizes the node set V as a
set of controllers, field devices, plus the CRP. (See (3))

V={§.{nliell.n]nz}. {e'Ylic[1l.nInZje[l.n]nZ}} (3)

Note that in (3), n represents the controllers’ quantity, which
in our case, equals the number of stages given each stage is as-
signed with only one controller. n; is the number of field devices
in the i-th stage. y; refers to the controller in the i-th stage, and
go}./‘ corresponds to the j-th field devices supervised by controller
;. Equation (3) defines the explicit composition of the node set V.

S. L(y)u, K. Wang, L. Zhang et al.

Pattern Recognition 141 (2023) 109661

Table 3
Symbol Annotations.
Subsection Symbols Annotations
4.1 Eo Set of all links reflecting a priori knowledge
4.1 w@ Set of links representing the devices’ physical communications
4.1 w© Set of links relecting how the states of devices are numerically correlated
4.1 & Node encapsulating the part of an ICS above the controllers’ layer (e.g. SCADA, HMI in Fig. 4)
4.1 n Controllers’ quantity
4.1 V4 Set of all integers
41 Yi The controller with respect to the i-th stage
4.1 (p].“‘ The j-th field devices supervised by controller y;
4.1 Q List of dictionaries reflecting the links between the controllers and field devices
4.1 w Dictionary in 2 reflecting the links between the controller and field devices in a specific stage
4.2 S Original numeric data stream
4.2 N Length of sequence for entropy computation
4.2 Brnins Pmax Global minima, maxima of a sequence
4.2 k Number of intervals devided in range [Bumin, Bmax|
4.2 em An event in which an element falls within the i-th interval of a sequence
4.2 Ei(") Entropy of event ®® computed from sequence of length N
42 AVa) - AGD) Variance, Standard Deviation of sequence entropies
4.2 Wo, Wmax Initial period candidate, upper bound of period value
4.2 8, w Variation rate of period candidate value, sliding step size of a window on data stream S
4.2 v Location (starting point) of a specific window on data stream S
4.2 P, np Set of all windows, size of set P
4.2 Pmaxs Prmin Averaged period maxima, minima over all windows for data stream S
4.2 R(EX), 02(EW) Entropy mean, variance over all windows for data stream S
— Py
4.2 e Initial vector representation of a device before normalization
4.2 e, €, e_,)v, Sub-vectors in € with respect to the device's General, Control and Measurement features
4.2 €norm Initial vector representation after normalization
4.2 X Initial vector representation of a device after PCA processing
4.2 m Xx's dimension
4.3 v; Particular node in the node set V
4.3 X; Initial vector representation with respect to node v;
4.3 h; Learnt embedding with respect to node v; in the Link Inference Decoder
4.3 i(") Learnt embedding with respect to node v; after the k-th message passing step is complete
43 d; Degree with respect to node v;
4.3 w Parameter matrix with respect to the k-th message passing layer in the Link Inference Decoder
43 H Embedding matrix containing all learnt embeddings h;’s
4.3 Aij, p(Aij) Event that node v; and v; are correlated, probability of A;;’s occurence
4.3 Plink Matrix containing all A;;’s
43 n Number of message passing layers
4.3 ep, Pmax Epoch index, configured upper bound of the epoch’s quantity
4.4 X Preprocessed temporal representation of a device, acting as an initial vector for message passing
4.4 S Interval extracted from original numeric stream for temporal condensation
4.4 N, n Length of &, number of consecutive values in & condensed into a single value
4.4 a Balancing factor shaping the amplitude of exponential weights
4.4 Wa(;‘) Parameter matrix with respect to the k-th message passing layer in the Anomaly Detector
4.4 bi Learnt embedding with respect to device v; in the Anomaly Detector
4.4 9., ¥ Label output with respect to device v;, list of all J;'s
vo | Lo 4’%‘) o r2)
2 = i 1
PLC-1 PLC-2 PLC-n
Controlling Controlling| ** * Controlling
Unit Unit Unit

!

t

Sensors Actuators Sensors Actuators

! t

(a) ICS Topology

v 1 v

Sensors Actuators

(b) Initial Graph

Fig. 4. ICS topology and the abstracted graph.

S. L(y)u, K. Wang, L. Zhang et al.

Table 4
Process Oriented Conditions.

Pattern Recognition 141 (2023) 109661

No. Devices

Correlation

1 FITs from adjacent stages true
2 FITs and LIT(LT)s within the same stage true
3 Adjacent devices in the piping diagram true
4 AlTs and other sensors false
5 Devices in the same stage exhibiting similar periodic features true

The scheme for deriving the devices’ physical linkage ¥ is il-
lustrated in Algorithm 1, and this linkage is displayed in Fig. 4(b).
The oval yellow node & is the central reference point abstracted
from all supervisory elements from the upper level. It is sur-
rounded by multiple orange nodes y’s representing controllers.
Each controller y is associated with numerous field devices ¢)’s
(green rectangles for sensors and blue for actuators).

Algorithm 1 Physical Linkage Definition.

Input: List of stages €2; Each stage element w is a dictionary
mapping every controller y in the stage

to the list &) of field devices ¢)s in connection with y.
Output: Node set V and physical link set W ()

Ensure:

1V g v g

2: Initialize the CRP node as &

3V <V+E

4: for each w in Q:

5 for each controller y in w:
6: v vy gy >
7: V<V+y
8
9

for each field device ¢() connected to y:
WD WD~y o) =

10: Ve<V4o®
11: end for

12: end for

13:end for

14:return (V, ¥ (D)

Defining the devices’ stream correlations W© requires some
intuitive observations over the system. Such correlations can be
derived from a few general conditions that serve as an overall
induction of the devices’ numeric associativity inferred from the
system’s piping and instrumentation diagram. Taking the popular
SWaT and WADI datasets as an example, such conditions are sum-
marized in Table 4. Note that minor discrepancies exist in the de-
vices’ notation representations (For example, the LITs in SWaT and
the LTs in WADI).

In the SWaT and WADI datasets, flow indication transmitters
(FITs) are sensors that measure flows in pipes. Since flows aggre-
gate in tanks whose water levels are evaluated by level indication
transmitters (LITs), it is intuitively considered that the readings of
these two sets of devices are intimately related. In the meantime,
we expect the existence of relations among FITs in adjacent stages
due to piping interconnections. The analyzer indicator transmitters
(AlTs) measure the acidity and conductivity of the flow. It is empir-
ically assumed that these inherent chemical properties have little
impact on the physical characteristics quantified in FITs and LITs.
Therefore, negativity is set as the ground truth value for all pairs
with an AIT as one of the elements. Finally, we incorporate peri-
odicity as a link indicator based on the assumption that given one
state change causes a variation of another, they share similar cyclic
properties. For example, the water level in a tank varies in a peri-
odic fashion due to the cyclic change of flows in its directly linked

pipes. Consequently, many links among the devices are assigned a
value of 1 denoting their existence and 0 otherwise. A portion (e.g.
40%) of these links are sampled to construct ¥© and the rest is
utilized for assessing the quality of the graph during the evaluation
process.

With both W™ and W© determined, the construction of the
base topology is considered complete, and the base graph is final-
ized as G(V,Eg = YD u ¢ ©),

4.2. Feature analyzer

In a heterogeneous ICS structure covering a variety of devices,
difficulties in creating a general representation format for every
node in the network reside in the nodes’ profile incompatibility.
Current solutions tend to circumvent this issue via vector random-
ization. While this might be effective under specific circumstances
and straightforward to implement, it undermines the model’s cred-
ibility as to how each device’s properties impact the model’s per-
formance. Therefore, to counter this disadvantage, we design the
Feature Analyzer module to produce a unified and interpretable
representing paradigm that fuses a node’s features from multiple
perspectives.

We incorporate attributes of three categories in a node’s vector
representation, namely the general process, controlling and mea-
surement properties. Taking the sensors as an example, the gen-
eral process features include the devices’ scope of interference;
Controlling properties exhibit their position as well as the rela-
tionship with their direct neighbourhood in the network; Mea-
surement properties form a set of data characteristics rendered by
the readings, which are closely relevant to the respective industrial
process. Below is the list of features extracted for all sensors with
applicable readings (See Table 5).

Most of the features in Table 5 are fairly obvious to discern
in the base topology and easily expressed in one-hot representa-
tions (e.g. Given there are 4 stages in an industrial process, vec-
tor (0,1,0,0) refers to the 2nd stage as the 2nd entry in the vector
is non-zero). However, measurement property extraction necessi-
tates in-depth flow analysis. So far, numerous studies have sug-
gested a decent likelihood of flow periodicity in industrial pro-
cesses, ranging from the devices’ communicating routine to their
numeric stream patterns. Therefore, we select a couple of metrics
characterizing this periodic pattern along with a few subsidiary
data distributive properties as our measurement features, as shown
in Table 5.

To specify all measurement properties, periodicity is flagged in
a one-hot manner ((1,0,0) for non-constant periodic, (0,1,0) for con-
stant, (0,0,1) for non-periodic). Period values are set to the corre-
sponding period, zero and infinity with respect to periodic, con-
stant and non-periodic streams. The max (min) value is computed
as the average of the largest local maxima (smallest local minima)
within all consecutive cycles for periodic streams, while defined as
the global maxima (minima) for non-periodic streams. The mean
and the standard deviation of the information entropy are applica-
ble only to periodic streams and are set to zero and infinity with
respect to constant and non-periodic streams. The definition of the
information entropy in this context is presented as below:

S. L(y)u, K. Wang, L. Zhang et al.

Table 5
Feature Specification.

Pattern Recognition 141 (2023) 109661

Categories Features

General Process Properties
Controlling Properties
Measurement Properties

Device type, Process & Sub-process
Controllers performing pooling
Periodicity, Period Value, Period Max(Min),Period Entropy Mean(Variance)

Definition 2. Given a finite sequence of N elements, the sequence’s
closed range [Bmin, Bmax] is partitioned into k(1 < k < N) segments
where B, and Bmax correspond to the sequences global minima
and maxima. ®® corresponds to the event in which an element’s
value falls within the k-th interval. The entropy E§k> is hereby de-
fined as

k
EV < =3 p(©D)log(p(©?)) “
i=1

The entropy defined in equation (4) characterizes the distribu-
tive properties of a sequence and thus is employed as a measure-
ment feature of sensor reading series. For simplicity, the range is
divided uniformly.

In order to determine the period value in cyclic streams, we
design and develop the Sliding Window Entropy (SWE). For a per-
fectly periodic sequence with period T, entropy defined in a partic-
ular manner obtained within a window of size T =nT(n € Z*) re-
mains constant. In other words, the entropy suggests zero variance
at 7. Such a perfect scenario is rarely spotted in a real ICS setting.
Therefore as an alternative, we find the T that produces the most
stationary entropy, measured by its Variance (A)) or standard
deviation (A D)), The overall pipeline is presented in Algorithm 2.

Algorithm 2 Sequence Period Mining.

Input: Data sequence S

Output: Period Candidate T

Ensure:

1: Initialize the window size ¢ as wg, window size upper bound
Wmax, Variation step size §, sliding step

size &y, number of segments as k and the list of entropy L(El.("))
2: while ¢ is in the interval [wg, Wmax]:

3. L(Y) < [k x 8 for ke [0, L%J) nz]

4: for all ¥ in L(y):

5: &« Ei(k) within window starting at i in S (calculated in
(4))

6: LEX) « LEX) +e

7: end for

8: perform convexity check on L(El.(k)): We keep counts of

consecutive descents in L(EI.(k))

and the succeeding rises to distinguish a convex curve from
random noisy fluctuations

9: if L(Ef‘)) shows local convexity:

10: T < L(Ei(k))/s local minima
11: return T

12: else:

13: clear L(Ei("))

14: end if

15: 2«46
16:end while
17:T < Wmax
18:return T

The main idea of Algorithm 2 is to apply sliding windows to
a stream of numeric values and determine the window size that

minimizes the entropy’s (Defined in Definition 2) standard devia-
tion. The window size is originally set to wy and increases by step
size § upon completion of each iteration (stopping at the upper
bound Wmax). During each iteration, the entropy El.(‘) is computed
for all windows and the variance of the entropy sequence A V@) is
stored in an array. A smaller AV value indicates a stronger ten-
dency of convergence in the entropy sequence. As the window size
increases, if A% consistently decreases to a local minima (deter-
mined via convexity check in line 8), this indicates that the entropy
at this setting is the most stationary, implying potential periodicity
in the original sequence. The algorithm outputs the corresponding
window size as the resulting period value T. Once we get T, and
given the set P of the T-length windows defined at all positions
Y’s in the stream as regulated in Algorithm 2, the rest of the mea-
surement property values are assigned or calculated as thus:

1
Pmax = - > sup{S{w : w+T]} (5)
P VYweP
1 .
Prin = - inf{S[w : w+ T} (6)
P vwep
1
RED = - 3 EY (7)
P YweP
1 2
o (€)= - 3 [EY) - EY] (8)
P vwep

Note that the pmax in (5) and the p;, in (6) represent the
averaged period maxima and minima. They are computed as an
average of all maximum(or minimum) values with respect to the
sliding windows (Note that sup{S[w : w + T]} refers to a window
starting at w. The sup(.) and inf(.) indicates the upper and lower
bounds of the window’s numeric range). The M(Ef")) in (7) and the

Jz(Ei(k)) in (8) stand for the mean and variance of the entropies
computed for all windows (np is the size of window set P).

After all features in Table 5 are ready, they are fused within
a single vector € (see (9)) as a device’s initial vector represen-
tation for subsequent graph learning. Taking the SWaT dataset as
an example, there are totally 33 entries in this vector (See Fig. 5).
The number of entries with respect to the general, controlling and
measurement features are 14, 6 and 13. All particular features and
the quantity of entries they are assigned are highlighted in red
context. For instance, in terms of measurement properties, the fol-
lowing features are specified: measurement type, periodicity and
statistic related features. They are each allocated 5, 3 and 5 entries
in the vector representation (Particularly, 5 entries are assigned for
the one-hot expression of 5 measurement types).

— — =
€ =egllec|lem 9)

Note that e_G), e_E and ey in (9) are sub-vectors with respect
to the general, controlling and measurement features defined in
Table 5, and the symbol || denotes concatenate operation.

It is notable that the numeric ranges of values with respect to
different features can significantly deviate from each other, which
might cause the training algorithm to be heavily biased towards
the feature values with dominant scales. To circumvent such dis-
crimination, normalization is applied over all the feature values.

S. L(y)u, K. Wang, L. Zhang et al.

Pattern Recognition 141 (2023) 109661

Dimension: 14 Dimension: 6 Dimension: 13
Attributes (#entries): Attributes (#entries): Attributes (#entries):
Device Type (3) Controller Connection Measurement Type (5)
Process (6) (6) Periodicity (3)

Sub-process (5)

Statistics (5)

Fig. 5. Initial Feature Vector Structure (SWaT Showcase).

For simplicity, we introduce the arctangent scheme to achieve nor-

malization (see (10)).

el L« %arctan(e(i)) (10)
In (10), e® is the i-th element in ¢, and e()., is the corre-

sponding normalized value. Note that the value of i does not ex-

ceed e’s dimension.

By applying normalization, every feature is mapped to some
value within the range of (0, 1), hence shrinking the likelihood
of commonly experienced training problems such as gradient
vanishing.

Finally, the Principal Component Analysis (PCA) is applied to the
normalized vector to downsize the initial vector representation x
for efficient graph learning (see (11)).

X[1xm] = PCA(enurm) (11)

In (11), x is the finalized initial vectors and m refers to x’s di-
mension, which is usually smaller than the size of ejorm.

4.3. Link inference decoder

Given the devices’ initial vectors x’s the Feature Analyzer pro-
duces, there are extensive methods to infer the devices’ associa-
tivity, such as the Bayesian Network and Support Vector Machine
(SVM). However, despite being simple and efficient, these meth-
ods lack consideration of the devices’ associativity in a specified
topological context, and are therefore insufficient for accurate link
inference (graph learning) in complex networks including the ICSs.
Thus, to guarantee the method’s adaptivity to distinctive networks,
we employ the GNN approach.

To facilitate efficient graph learning, we utilize the uncompli-
cated message passing layers (GCN, GAT and GraphSAGE), whose
performances are assessed and compared in Section 5. Given all
intial vectors x's derived in (11), the message passing layers con-
verts the x’s into new embeddings h’s. To exemplify this process
with a 2-layer GCN using the RelU activation, this transformation
for node v; in graph G(V, Ey) is achieved as thus:

— 1 1
msg (v, vj) = > i (12)

' <vvj>eEy & vvjeV J
hf”:ReLU((msg (U,’, Uj)+X,')-W(1), <V, Vj >€ Eo & 1, Vj e V)

(13)

— 1 1
msgx (17, vj) = 5 > —h(V (14)

b <vvj>eEy & vvjev)

hi = ReLU((msgz(Ul-, Uj) + hi(])) ~W(2), <V, Vj >€ Eo & 1, Vj e V)
(15)

Equations (12) and (14) regulates how a message from node v;
to node v; is produced using v;'s vector representation. They show
that each message goes through 2 phases of normalization: Phase
1 occurs at the message source v; in which the original vector is
normalized with v;’s out-degree d;, and Phase 2 happens at the
destination node v; which further normalize the message with v;’s
in-degree d;. Equations (13) and (15) exhibits how a node v; up-
dates its own vector with the aggregated messages from its neigh-
bours. Note that W) and W2 are weight matrices with respect
to the 2 message passing layers. The shapes of W) and W® are
configured by the input’s dimension as well as the number of neu-
rons assigned to each hidden layer.

In our instantiation, we empirically fix the neuron quantity in
one message passing layer to 64 to keep the computational cost
of the network manageable as well as to maintain a balance be-
tween the states of overfitting and underfitting, while allowing for
the number of layers to traverse all integer values from 2 to 4.
The reason for limiting the number of layers within 2 and 4 is
stated as follows: As every field device is directly connected to its
controller (see Fig. 4(b)), it takes as few as 2 moves for one pe-
ripheral field device to receive messages from another deployed
in the same stage, given only one controller is available for each
stage. With all controllers linked to a single node (the CRP), it
costs as few as 4 moves for messages from one field device to
travel to its counterpart in a different stage. As the number of
hidden layers is a reflection of a node’s scope of visibility over
the entire graph with each layer representing one move of mes-
sage passing, it is suggested and analyzed as a factor shaping the
model’s performance. For all nodes in the hidden layers, a ReLU
activation function is adopted for nonlinear transformation. Fi-
nally, the cross entropy loss is adopted for parameter optimization.
The training process of the Link Inference Decoder is presented
in Algorithm 3.

Note that to efficiently infer the devices’ in-depth links using
the learnt embeddings, we adopt and compare the following de-
coding mechanisms:

(a) A Sigmoid function that takes in as input a single pair of
learnt embeddings from nodes whose relations are of interest, and
outputs a value indicating the odds of linkage, which is accom-
plished with the scheme below.

p(A;j) < sigmoid(h - h;) (16)

In (16), A;; denotes the event that node i and node j are re-
lated to each other. h;, h; are the learnt embeddings for node i and
j respectively. Their inner product is fed into the sigmoid function
generating a value in (0, 1), implying the likelihood of a link’s ex-
istence. Equilvalent matrix expression shows as thus,

Pjink < sigmoid (HT - H) (17)

where Pj; is the probability matrix and H is the embedding ma-
trix stacked up with all learnt embeddings.

S. L(y)u, K. Wang, L. Zhang et al.

Algorithm 3 Link Inference Decoder Training.

Input: Base topology G(V, Eg), initial vector representations x’s
Output: Learnt graph G(V,E)

Ensure:

1: Configure the number of message passing layers 71, upper bound
of the number of epochs epmax.

Initialize the epoch index ep = 0, the list of weight matrices [W®],

iel0,n)NZ

2: while ep < epmax:

3: for each weight matrix W® with respect to each message
passing layer:

4: Yv; eV:

5: Compute messages from all v/s neighbours v;.s with

current vector representations

(See (12) or (14))

6: Aggregate computed messages and update vjs
representation with W® and ReLU activation

(See (13) or (15))

7: end for

8: Compute probability matrix Pjj,, (See 17)

9: Compute cross entropy loss using Pjj,
10: Perform back propagation
11: ep<«ep+1

12:end while
13:0btain the learnt links E from the finalized Py
14:return G(V,E)

(b) A Softmax function applied to the output of a fully-
connected layer which maps a link embedding to a 2-dimensional
vector. Note that a link embedding is computed from the vectors
with respect to the link’s endpoints via mean and max pooling op-
erations.

In summary, the Link Inference Decoder learns a complex graph
reflecting the devices’ sophisticated process-oriented associativity.
It outputs a new set of edges E that contains not only the a pri-
ori knowledge in the base topology, but the newly learnt in-depth
relations as well. At this stage, the graph G(V, Ey) the Graph Pro-
cessor outputs is updated to G(V, E).

4.4. Anomaly detector

Using the devices’ explicit process-oriented associativity, the
Link Inference Decoder produces a graph whose links represent
the convoluted relations among the devices in an ICS network.
In order to accurately detect anomalous patterns hidden in the
numeric data streams with respect to these devices via leverag-
ing the information rendered by the produced graph, a second
GNN-based module is built. This module takes in the graph and
the nodes’ preprocessed temporal expressions (with respect to any
jiff of interest) derived from the original data flow, produces em-
beddings via message passing, and maps the learnt embeddings
to their respective labels denoting whether an anomalous pat-
tern is detected. Distinguished from many methods implemented
with composite frameworks, this scheme considers both tempo-
ral and spatial features with a single architecture, and hence is
expected to be both accurate and efficient in anomalous pattern
recognition.

To create the preprocessed temporal expression y for a specific
node v; € G(V,E) at a particular time tick t, we take the v;’s origi-
nal numeric stream S, and employ a weighted averaging scheme to
compress the historical data snippet within a specified interval of
length 91 ending at this time tick ¢, denoted as & = S[t — 91+ 1 : t].
Assuming the influence of a historical numeric value decays with

10

Pattern Recognition 141 (2023) 109661

time, an exponential weighted average scheme is implemented so
that the produced expression better reflects the temporal charac-
teristics of the original data flow (see (18)). The size of the interval
N is intuitively configured to be large enough to cover the most
necessary temporal sequential features, which is 4300 for SWaT
(period values for most periodic flows) and 5000 for WADI (em-
pirically set and subject to tuning). Then every n(set to 100 in this
work) consecutive values in this interval are condensed into a sin-
gle one via weighted averaging. In this scenario, the preprocessed
temporal representations are of size 2* = 43 and 50, with respect
to SWaT and WADI datasets.
(i+1)n-1 () N
. —a(n—j) =[] i N
xlil< > e 6[]],1€[0,n)m2

j=in

(18)

Formula (18) shows how each of x’s elements is computed. In
(18), values of n consecutive time ticks are integrated as one to
achieve temporal compression. Note that the coefficient a is a bal-
ancing factor shaping the amplitude of the exponential weights,
which is set as 4 in this work.

Using the graph G(V,E) obtained from the Link Inference De-
coder and the devices’ preprocessed temporal representations x's,
the Anomaly Detector conducts embedding learning via message
passing. Similar to the Link Inference Decoder, we adopt efficient
GNN blocks (GCN, GAT and GraphSAGE) as our message aggrega-
tors. The number of neurons in each hidden layer is set to 128, and
the number of layers varies from 2 to 4. A ReLU is employed for
nonlinear activation and cross entropy loss is adopted for training.
Instead of being fused in a joint decoder, every learnt embedding
b is propelled into its exclusive Softmax layer to derive a label y
(0’s for normal and1/s otherwise). In this fashion, each label is ex-
pected to denote the state of a particular device at any applicable
time of interest, and hence device-level anomalous pattern recog-
nition is achieved via distributed decoding. The Anomaly Detector’s
training process is described in Algorithm 4.

Algorithm 4 Anomaly Detector Training.

Input: Learnt graph G(V,E), preprocessed temporal representa-
tions x’s for all devices

Output: Derived states ¥

Ensure:

1: Configure the number of message passing layers 7, upper bound
of the number of epochs epmax.)
Initialize the epoch index ep = 0, the list of weight matrices [Wa(y],
iel0,n)NnZ

Initialize ¥ « empty list

2: while ep < epmax:

3: for each weight matrix Wa(;) with respect to each message
passing layer:

4: Yv; eV:

5: Compute messages from all v/s neighbours v}s with
current vector representations

6: Aggregate computed messages and update vjs
representation with Wa({;) and RelU activation

7: end for

8: for each learnt embedding h; with respect to device v;:

9: Vi < softmax(h;)

10: Y <V 4+

11: end for

12: Compute cross entropy loss using ¥

13: Perform back propagation
14: ep<«ep+1

15:end while

16:return ¥

S. L(y)u, K. Wang, L. Zhang et al.

Table 6
Dataset Characteristics.

Pattern Recognition 141 (2023) 109661

Dataset #Stages #Field Devices Duration with Attack #Samples = Anomaly Ratio after Temporal Condensation
SWaT 6 51 4 days 449,919 0.3238
WADI 5 123 2 days 172,801 0.3159

7000

6000

5000

4000

3000

2000

1000

0 — & ' o
3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4500 5000

g LIT101 s FIT101 s AITS03 g FIT201

e FT30 1 wgen LIT301 g LIT401

(a) Periodic Curves

5. Evaluation

Evaluation is conducted over the following open source
datasets: the Secure Water Treatment dataset (SWaT) and the Wa-
ter Distribution dataset (WADI). Both datasets are developed on
testbeds built for the simulation of multi-stage industrial processes
(water treatment for SWaT and water distribution for WADI). Each

1 ."‘—-O—M._._“ PN — -~
08 o=
06
04
02
0
3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4500 5000
g AITS01 =—g=FIT501 FITS02
(b) Non-periodic Curves
Fig. 6. AV _T Curves (SWaT Showcases).
14
12
1
(
4 .
S
0. N
~ "
e - Ly / FAATN
V'V W VWM W (,,rk,\jg/u_‘ AN A o
d

dataset contains columns of numeric streams, each of which as-
sociated with a particular device. The values in every column are
sampled with a 1-second interval for both datasets. The core fea-
tures of the datasets are presented in Table 6.

5.1. Feature extractor evaluation

As illustrated in Section 4, we introduce an IE-based methodol-
ogy to derive the cyclical properties in a device’s numeric stream.
Periodicity is extrapolated and specific period values are observed
at the point where IE’s standard deviation falls to a local valley.
The variance curves A(Y®) _T of devices exhibiting periodic and
non-periodic properties are presented in Fig. 6. We observe that
the local convexity of the AY®) —T curves for particular devices
(e.g. LIT-101) is apparent in Fig. 6, and thus the period values with
respect to these devices are determined as the local minima of the
curves and serve as a basis for the computation of other periodic
features. The LIT-101 in SWaT, for example, takes 4300 as its ap-
proximated period.

5.2. Link inference accuracy

The Link Inference Decoder is implemented and trained with
multiple types of classic GNN blocks: GCN, GAT and G-SAGE. Dur-
ing the training process, the loss converges rapidly for all three
GNN scenarios (GCN, GAT and G-SAGE). Taking the GCN as an
example, by tuning the number of GCN layers (2, 3, 4 layers)
and performing a 20% dropout, its loss curves are exemplified
in Fig. 7.

The performances of the Link Inference Decoders trained with
different encoding and decoding blocks are compared against the
link prediction baselines below: (a) the Bayesian Classifier, (b) the
Nonlinear Support Vector Classifier (SVC), (c) the principal com-
ponent analysis (PCA) and (d) the Cosine Similarity Analysis. The
results are shown in Table 7.

1

Fig. 7. Link Inference Decoder Training Loss Curves.

Table 7

Link Inference Baseline Comparison (Note: The message passing block adopted
in the link inference decoder is shown in parenthesis. e.g. AHGA (GCN) indicates
that GCN blocks are implemented).

Methods Decoder Accuracy Precision Recall F1
AHGA(GCN) Sigmoid 0.7753 0.6929 0.9887 0.8148
Softmax 0.7977 0.7431 0.9101 0.8181
AHGA(GAT) Sigmoid 0.7921 0.7241 0.9438 0.8195
Softmax 0.7753 0.7059 0.9438 0.8077
AHGA(GSAGE) Sigmoid 0.7809 0.7049 0.9663 0.8152
Softmax 0.7865 0.7525 0.8539 0.8000
PCA N/A 0.7564 0.2449 0.0723 0.1116
Nonlinear-SVC N/A 0.7398 0.1000 0.0938 0.0968
Bayesian N/A 0.8517 0.6731 0.5072 0.5785
Cosine Similarity N/A 0.8452 0.5776 0.3121 0.4052

Our observations are as follows:

1) In terms of decoding mechanisms, the AHGA models imple-
menting sigmoid inference decoders tend to exhibit an out-
standing rate of recall (mostly above 0.9), while suffering from
a relatively inferior precision (approximately between 0.60 and
0.75). This indicates that with sigmoid decoders employed, the
AHGA is capable of preserving the majority of the a priori link-
age knowledge suggested in the base topology, learning most
of the connectivity reflected by the process-oriented conditions

S. L(y)u, K. Wang, L. Zhang et al.

S H D S D S
& & & F S
R p &
o : > o o
‘;32\ ‘3* Vie\ “"b vg@ ‘g\\”\x

Pattern Recognition 141 (2023) 109661

300

250

200

150

100

- m
0

S &
é&

&

-

ébé 5\0

& &
'é*oé

(a) Time Consumption for the AHGAs (b) Time Consumption for Other Base-
lines (in ms)

(in ms)

Fig. 8. Correlation Inference Efficiency.

(which leads to a high recall), as well as implying new in-depth
associations the aforementioned conditions fail to cover, which
is why the precision rate is relatively low. From the perspec-
tive of link learning, this result is desirable as additional so-
phisticated links are successfully learnt from the devices’ ex-
plicit process-oriented relations. The AHGAs employing Soft-
max decoders, on the other hand, produce a more balanced
precision/recall output. Nevertheless, their ability to generalize
over the a priori knowledge is not as great compared to the
models using sigmoid decoders, as reflected by their rates of
recall.

2) With all heterogeneous devices profiled via fusion of specific
properties into their vector representations, the model’s inter-
pretability is improved, as every vector expression explicitly re-
flects how some device functions in specified industrial pro-
cesses, as well as how it impacts other devices in the network.
The learnt graph, in this case, is better tailored to the industrial
processes, rather than some random topology which cannot be
interpreted. It is implied that this graph provides a more reli-
able basis for subsequent anomalous pattern recognition.

3) Among all the baselines displayed in Table 7, the AHGA ap-
proaches generally outperform the rest with an F1 gain of ap-
proximately 22.15%. This discrepancy resides in the methods’
operational principles. The Cosine Similarity, for instance, takes
the devices’ vectorized profiles and directly performs pair-wise
similarity computation without considering any relational char-
acteristics in specified industrial processes. The Bayesian and
Nonlinear-SVC, on the other hand, fabricates link vectors using
the devices’ profiles and conduct classification over all the links.
Similarly, these approaches treat each link as an independent
entity and do not leverage the devices’ process-specific associa-
tivity. Therefore, it is claimed that the AHGA is a better fit to
deriving relations in specified industrial scenarios.

5.3. Link inference efficiency

In order to assess the AHGA's graph learning efficiency, we
measure the amount of test time consumed with respect to all
AHGA variations and other baseline methods (See Fig. 8).

Observation implies that the Softmax-based AHGAs are approxi-
mately 33% less efficient with a decoding time of around 4.5 msecs
than the ones using a sigmoid decoder, which takes about 3 msecs.
The Graph-SAGE being an exception, it is intuitively assumed that
the Softmax decoder should work longer due to the additional

12

fully-connected layer as well as the required exponential computa-
tion in the Softmax function. In comparison with other baselines,
the AHGAs are very efficient at test phase despite their complex
training workflows. This may arise from the difference between
the AHGAs and other baselines stated as thus: Once trained, the
AHGAs enable link inference via only a few steps of operations
on the matrix level, which is minor compared to other methods
that have to perform element-wise computations (e.g. the pair-
wise similarity computation of 2 specific node vectors in cosine
similarity, as well as the element-wise input processing in Bayesian
and Nonlinear-SVC).

5.4. Anomaly detection accuracy

Implemented with distinct message passing blocks in the
Anomaly Detector, the AHGA’s ability to recognize anomalous pat-
terns is evaluated against the baselines as follows: (a) K-Means, (b)
Regular Graph Convolutional Network (GCN), (¢) Graph Attention
Network (GAT), (d) Graph Sample and Aggregate Model (Graph-
SAGE), (e) Topology Adaptive GCN (TAGCN), (f) Flow-Topology GCN
(FT-GCN), (g) Isolation Forest and (h) One-class SVM (OCSVM). As
applicable, the graph inputs for all GNN baselines are initialized as
Fig. 4. The results are summarized in Table 8.

The following insights are obvious:

1) The AHGAs outperform their GNN counterparts (GCN, GAT, and
GSAGE) in most evaluation metrics. For example, the AHGA us-
ing GSAGE detector achieves an F1 gain of approximately 4.47%
(SWaT) and 13.64% (WADI) over the regular GSAGE model. It is
speculated that this improvement arises from the addition of
the Link Inference Decoder which incorporates the devices’ so-
phisticated associativity in the graph used for anomalous pat-
tern recognition. In this graph, any pair of devices deemed
related with each other are directly linked. In this case, the
availability of information from related devices is drastically in-
creased as it takes only one message passing step to obtain,
and therefore, this information can be more directly and suf-
ficiently encoded in a node’s embedding vector used by the
AHGA to detect anomalous patterns. As to the GCN, GAT and
GSAGE where related devices are not immediately connected, a
node’s embedding vector suffers from a loss of in-depth corre-
lational information due to the redundant message passing it-
erations across irrelevant nodes, and therefore leads to less de-
sirable pattern recognition results.

S. L(y)u, K. Wang, L. Zhang et al.

Pattern Recognition 141 (2023) 109661

Table 8
Anomaly Detection Baseline Comparison.
SWaT WADI
Methods . .
Accuracy Recall Precision F1 Accuracy Recall Precision F1
AHGA(GCN)-GCN 0.7838 0.6165 0.8009 0.6967 0.8207 07330 0.8138 0.7713
AHGA(GCN)-GAT 0.7883 0.6072 0.8855 0.7204 0.7495 05794 0.8292 0.6822
AHGA(GCN)-GSAGE ~ 0.8198 0.6675 0.8918 0.7635 0.8325 0.7589 0.8196 0.7881
GCN 0.7687 05733 0.8587 0.6875 0.7189 05260 0.7859 0.6302
GAT 0.7888 0.6106 0.8704 07177 0.7327 05499 0.8161 0.6570
GSAGE 0.7887 0.6103 0.8741 0.7188 0.7295 05442 0.8122 0.6517
TAGCN 0.7630 0.5538 0.8692 0.6766 0.7277 0.5372 0.8115 0.6465
FI-GCN 0.7641 0.5587 0.8754 0.6820 0.7345 05383 0.7528 0.6277
0CSVM 0.6519 05275 0.5321 05298 0.6466 05352 0.5371 0.5361
Isolation Forest 0.6278 0.5271 0.5270 05270 0.6172 05393 0.5402 0.5398
K-Means 0.6344 0.5295 0.5304 05299 0.6145 05122 05136 0.5129
B |- == Average training time(s) 6. Conclusion
3.0 [Test time . i .
In this work, we investigate the problem of anomalous pattern
25 — recognition in the data streams of the ICS devices. A comprehen-
g 50 sive framework named the AHGA is proposed, which integrates a
5 graph processor, a feature analyzer, a link inference decoder and an
1%) .
Y15 anomaly detector. The AHGA has merit compared to other mod-
* Lo els in that it captures the in-depth associativity among hetero-
’ geneous ICS devices using the explicit process-oriented relations
0.5 among them. This associativity exhibits more interpretability given
it is derived from the devices’ explicit features reflecting how they
00"AHGA-GCN GCN AHGA-GAT GAT AHGA-GSAGE GSAGE function in the specified industrial processes as well as how they

Methods

Fig. 9. Anomaly Detection Efficiency.

2) In comparison with TAGCN and FT-GCN, the AHGA also achieves
superior results. In TAGCN, multiple convolutional kernels are
adopted to extract a node’s local features from neighbours of
distinct distances. Although this enables the TAGCN to update a
device’s profile with information of distant nodes, the amount
of such information obtained in this manner is not as suffi-
cient as direct linkage implemented in the AHGA given identical
message passing settings. Similar statements apply to the FT-
GCN which adopts multiple TAGCN channels as its core encod-
ing mechanism. Even though the FT-GCN'’s overall performance
is slightly better than the TAGCN for its multi-view setting, the
correlations among distinct devices are not sufficiently learnt
compared to the AHGAs.

3) The AHGAs’ performance also surpasses the outlier detectors
(OCSVM, Isolation forest) and the K-Means clustering method,
in that the profile of each device is directly used for boundary
computation in OCSVM, IForest and K-Means, with no device-
wise relationships taken into account. In this fashion, these
methods do not effectively adapt to the ICS scenarios in which
devices are highly associated.

5.5. Anomaly detection efficiency

Finally, we assess AHGA's runtime efficiency in anomalous
pattern recognition (training/test time consumption) and the
results are illustrated in Fig. 9. It is apparent that the AHGAs are
half as efficient as their counterpart GNN models in runtime. This
results from the difference in the graph’s linkage complexity. As
the AHGAs has more links in the graph that represent the devices’
in-depth process-oriented relations, it is not surprising that they
are more time-consuming than the GNN baselines without graph
learning. However, it is a drawback that needs to be resolved
to meet the real-time requirements of ICS anomalous pattern
detectors.

13

may influence each other. Using the learnt associativity, the devices
are better aware of how they are related to the rest of the net-
work, which serve as a more reliable basis for anomalous pattern
recognition. Furthermore, in terms of granularity, the AHGA is able
to conduct device-wise anomalous pattern detection, differentiated
from most of the NN baselines operating on the coarse-grained
system’s level. Our evaluation demonstrates the AHGA’s superior-
ity in anomalous pattern detection, with an F1 gain of 4.47% and
13.17% over the current baselines with respect to the SWaT and
WADI datasets. The drawback of the AHGA lies in its extra runtime
consumption caused by the increasing complexity of the learnt
graph reflecting the devices’ in-depth relations. Moreover, as the
a priori knowledge for different industrial processes can be rather
distinctive, it is challenging to create to a set of conditions that
generalizes over all processes. To address these deficiencies, our
future work involves studying the commonality of disparate indus-
trial scenarios, and attempting to derive a general set of conditions
for graph learning that applies to all or the majority of the types
of industrial processes. In addition, we shall develop schemes of
re-regulating message passing paths and reducing the quantity of
nodes (via clustering or other approaches) to optimize the AHGA’s
runtime efficiency.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data is available on request to iTrust, who creates the
datasets used in the paper.

Acknowledgement

This work is supported by the National Key R&D Program of
China (2020YFB2009502) and the National Natural Science Foun-

S. L(y)u, K. Wang, L. Zhang et al.

dation of China (62272129). Dataset is provided by iTrust Centre
for Research in Cyber Security (https://itrust.sutd.edu.sg/dataset/).

References

[1] M. AlMedires, M. AlMaiah, Cybersecurity in industrial control system (ICS), in:
2021 International Conference on Information Technology (ICIT), IEEE, 2021,
pp. 640-647.

[2] M. Mbow, K. Sakurai, H. Koide, Advances in adversarial attacks and defenses in
intrusion detection system: a survey, in: Science of Cyber Security-SciSec 2022
Workshops: Al-CryptoSec, TA-BC-NFT, and MathSci-Qsafe 2022, Matsue, Japan,
August 10-12, 2022, Revised Selected Papers, Springer, 2023, pp. 196-212.

[3] J. Yu, Y. Zhang, Challenges and opportunities of deep learning-based process
fault detection and diagnosis: a review, Neural Comput. Appl. 35 (1) (2023)
211-252.

[4] J. Yang, C. Zhou, Y.-C. Tian, S.-H. Yang, A software-defined security approach
for securing field zones in industrial control systems, IEEE Access 7 (2019)
87002-87016.

[5] AM.Y. Koay, RK.L. Ko, H. Hettema, K. Radke, Machine learning in industrial
control system (ICS) security: current landscape, opportunities and challenges,
J. Intell. Inf. Syst. (2022) 1-29.

[6] B. Kim, M.A. Alawami, E. Kim, S. Oh, J. Park, H. Kim, A comparative study of
time series anomaly detection models for industrial control systems, Sensors
23 (3) (2023) 1310.

[7] Z. Qian, K. Huang, Q.-F. Wang, X.-Y. Zhang, A survey of robust adversarial train-
ing in pattern recognition: fundamental, theory, and methodologies, Pattern
Recognit. 131 (2022) 108889.

[8] M. Abdallah, N. An Le Khac, H. Jahromi, A. Delia Jurcut, A hybrid CNN-LSTM
based approach for anomaly detection systems in SDNs, in: The 16th Interna-
tional Conference on Availability, Reliability and Security, 2021, pp. 1-7.

[9] J. Sinha, M. Manollas, Efficient deep CNN-BILSTM model for network intrusion
detection, in: Proceedings of the 2020 3rd International Conference on Artifi-
cial Intelligence and Pattern Recognition, 2020, pp. 223-231.

[10] Y. Wu, H.-N. Dai, H. Tang, Graph neural networks for anomaly detection in
industrial internet of things, IEEE Internet Things J. (2021).

[11] H. Kim, B.S. Lee, W.-Y. Shin, S. Lim, Graph anomaly detection with graph neural
networks: current status and challenges, IEEE Access (2022).

[12] A. Deng, B. Hooi, Graph neural network-based anomaly detection in multivari-
ate time series, in: Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, 2021, pp. 4027-4035.

[13] X. Deng, J. Zhu, X. Pei, L. Zhang, Z. Ling, K. Xue, Flow topology-based graph

convolutional network for intrusion detection in label-limited iot networks,

[EEE Trans. Netw. Serv. Manage. (2022).

M.A. Umer, K.N. Junejo, M.T. Jilani, A.P. Mathur, Machine learning for intrusion

detection in industrial control systems: applications, challenges, and recom-

mendations, Int. J. Crit. Infrastruct. Prot. (2022) 100516.

P. Arora, B. Kaur, M.A. Teixeira, Security in industrial control systems using

machine learning algorithms: an overview, ICT Anal. Appl. (2022) 359-368.

B.A. Tama, S.Y. Lee, S. Lee, A systematic mapping study and empirical com-

parison of data-driven intrusion detection techniques in industrial control net-

works, Arch. Comput. Methods Eng. 29 (7) (2022) 5353-5380.

X. Zhang,]. Mu, X. Zhang, H. Liu, L. Zong, Y. Li, Deep anomaly detection with

self-supervised learning and adversarial training, Pattern Recognit. 121 (2022)

108234.

[18] J. Shen, N. Robertson, Bbas: towards large scale effective ensemble adversar-
ial attacks against deep neural network learning, Inf. Sci. (Ny) 569 (2021)
469-478.

[19] J.-R. Jiang, Y.-T. Lin, Deep learning anomaly classification using multi-attention
residual blocks for industrial control systems, Sensors 22 (23) (2022) 9084.

[20] C. Karras, A. Karras, S. Sioutas, Pattern recognition and event detection on iot
data-streams, arXiv preprint arXiv:2203.01114 (2022).

[21] A. Dairi, F. Harrou, B. Bouyeddou, S.-M. Senouci, Y. Sun, Semi-supervised deep

learning-driven anomaly detection schemes for cyber-attack detection in smart

grids, in: Power Systems Cybersecurity: Methods, Concepts, and Best Practices,

Springer, 2023, pp. 265-295.

S. Rao, M. Ghaderi, H. Zhang, CloudPAD: managed anomaly detection for ICS,

in: Proceedings of the 4th Workshop on CPS & IoT Security and Privacy, 2022,

pp. 55-61.

E.A. Boateng, J.W. Bruce, D.A. Talbert, Anomaly detection for a water treat-

ment system based on one-class neural network, IEEE Access 10 (2022)

115179-115191.

S. Li, J. Liu, Z. Pan, S. Lv, S. Si, L. Sun, Anomaly detection based on robust spa-

tial-temporal modeling for industrial control systems, in: 2022 IEEE 19th Inter-

[14]

(15]

[16]

[17]

[22]

[23]

[24]

14

Pattern Recognition 141 (2023) 109661

national Conference on Mobile Ad Hoc and Smart Systems (MASS), IEEE, 2022,
pp. 355-363.

H.T. Truong, B.P. Ta, Q.A. Le, D.M. Nguyen, C.T. Le, H.X. Nguyen, H.T. Do,
H.T. Nguyen, K.P. Tran, Light-weight federated learning-based anomaly detec-
tion for time-series data in industrial control systems, Comput. Ind. 140 (2022)
103692.

D.C.L. Sung, G.R. MR, A.P. Mathur, Design-knowledge in learning plant dynam-
ics for detecting process anomalies in water treatment plants, Comput. Secur.
113 (2022) 102532.

[27]]. Serey, M. Alfaro, G. Fuertes, M. Vargas, C. Duran, R. Ternero, R. Rivera,
J. Sabattin, Pattern recognition and deep learning technologies, enablers of in-
dustry 4.0, and their role in engineering research, Symmetry (Basel) 15 (2)
(2023) 535.

A. Sankar, X. Zhang, K.C.-C. Chang, Meta-GNN: metagraph neural network for
semi-supervised learning in attributed heterogeneous information networks,
in: Proceedings of the 2019 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining, 2019, pp. 137-144.

Y. Wang, J. Zhang, S. Guo, H. Yin, C. Li, H. Chen, Decoupling representation
learning and classification for gnn-based anomaly detection, in: Proceedings
of the 44th international ACM SIGIR conference on research and development
in information retrieval, 2021, pp. 1239-1248.

Z. Ning, Z. Jiang, H. Miao, L. Wang, Mst-gnn: a multi-scale temporal-enhanced
graph neural network for anomaly detection in multivariate time series, in:
Web and Big Data: 6th International Joint Conference, APWeb-WAIM 2022,
Nanjing, China, November 25-27, 2022, Proceedings, Part I, Springer, 2023,
pp. 382-390.

L. Peng, Y. Mo,]. Xu,]J. Shen, X. Shi, X. Li, H.T. Shen, X. Zhu, Grlc: graph rep-
resentation learning with constraints, IEEE Trans. Neural Netw. Learn. Syst.
(2023).

[32] L. Chang, P. Branco, Graph-based solutions with residuals for intrusion de-
tection: the modified e-graphsage and e-resgat algorithms, arXiv preprint
arXiv:2111.13597 (2021).

B. Jiang, B. Wang, B. Luo, Sparse norm regularized attribute selection for graph
neural networks, Pattern Recognit. 137 (2023) 109265.

L. Shuaiyi, K. Wang, L. Zhang, B. Wang, Global-local integration for GNN-based
anomalous device state detection in industrial control systems, Expert Syst.
Appl. 209 (2022) 118345.

A. Gillioz, K. Riesen, Graph reduction neural networks for structural pattern
recognition, in: Structural, Syntactic, and Statistical Pattern Recognition: Joint
IAPR International Workshops, S+ SSPR 2022, Montreal, QC, Canada, August
26-27, 2022, Proceedings, Springer, 2023, pp. 64-73.

[25]

[26]

(28]

(29]

(30]

[31]

[33]

(34]

[35]

Shuaiyi L(y)u received his M.S.E degree in Electrical and Electronic Engineering
from the University of Pennsylvania, the US. He is currently a Ph.D candidate in
Cybersecurity at Harbin Institute of Technology (HIT), China. His research is focused
on anomaly detection model design and optimization in industrial control systems
(ICSs).

Kai Wang is currently an Associate Professor with Faculty of Computing, Harbin
Institute of Technology (HIT), China. Before joined HIT, he was a Postdoctor in Com-
puter Science and Technology at Tsinghua University. He received his B.S. and Ph.D.
degree from Beijing Jiaotong University. His current research interest is mainly on
In-vehicle Intrusion Detection, V2X Security, Deep Learning, etc. He has published
more than 30 papers in prestigious international journals and conferences (e.g.,
ACM Transactions on Internet Technology, IEEE Systems Journal, IEEE Network), and
serves as the TPC Member and technical reviewer for many important international
conferences and journals (e.g., ACM Computing Surveys, IEEE Transactions on In-
dustrial Informatics, IEEE Internet of Things Journal, IEEE HotICN 2020). He is a CCF
Senior Member.

Liren Zhang received his Bachelor of Engineering in Information Security from
Harbin Institute of Technology, China. He is currently a master student in Computer
Technology at Harbin Institute of Technology (HIT) in China. His research focuses on
multi-view learning-based anomaly detection for industrial control systems (ICS).

Bailing Wang is currently an Professor with Faculty of Computing, Harbin Institute
of Technology (HIT), China. He received his Ph.D. degree from the School of Com-
puter Science and Technology, Harbin Institute of Technology, in 2006. His main re-
search interest is mainly on information content security, industrial control network
security, V2X Security, etc. He has published more than 80 papers in prestigious in-
ternational journals and conferences, and has selected for the China national talent
plan.

https://itrust.sutd.edu.sg/dataset/)
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0001
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0002
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0003
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0004
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0005
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0006
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0007
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0008
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0009
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0010
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0011
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0012
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0013
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0014
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0015
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0016
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0017
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0018
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0019
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0020
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0021
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0022
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0023
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0024
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0024
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0025
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0026
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0027
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0028
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0029
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0030
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0031
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0032
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0033
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0034
http://refhub.elsevier.com/S0031-3203(23)00362-X/sbref0035

	Process-Oriented heterogeneous graph learning in GNN-Based ICS anomalous pattern recognition
	1 Introduction
	2 Preliminaries and related work
	2.1 Preliminaries
	2.2 Related work

	3 Problem statement
	4 Model design
	4.1 Graph processor
	4.2 Feature analyzer
	4.3 Link inference decoder
	4.4 Anomaly detector

	5 Evaluation
	5.1 Feature extractor evaluation
	5.2 Link inference accuracy
	5.3 Link inference efficiency
	5.4 Anomaly detection accuracy
	5.5 Anomaly detection efficiency

	6 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	References

